当前位置:文档之家› 离散信号与系统时域分析

离散信号与系统时域分析

目录第1章设计任务及要求 (1)1.1课程设计内容 (1)1.2课程设计要求 (1)第2章设计原理 (2)2.1离散信号与系统的时域分析设计 (2)2.1.1描写系统特性的方法介绍 (2)2.1.2系统的时域特性 (2)第3章设计实现 (3)3.1实验内容与方法 (3)3.1.1实验内容 (3)第4章设计结果及分析 (3)4.1程序设计结果及分析 (4)总结 (7)参考文献: (7)附录: (8)第1章 设计任务及要求1.1课程设计内容编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。

具体要求如下:(1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。

② 求出系统的单位脉冲响应,画出其波形。

(2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。

(3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。

1) 用实验方法检查系统是否稳定。

输入信号为u(n)时,画出系统输出波形。

2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。

1.2课程设计要求1. 要求独立完成设计任务。

2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表13. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。

4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。

5. 课设说明书要求:1) 说明题目的设计原理和思路、采用方法及设计流程。

2) 详细介绍运用的理论知识和主要的Matlab 程序。

3) 绘制结果图形并对仿真结果进行详细的分析。

2.1离散信号与系统的时域分析设计2.1.1描写系统特性的方法介绍在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

2.1.2系统的时域特性系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[12]。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,则信号加入系统后,系统输出的开始一段称为暂态效应,随着n的加大,幅度趋于稳定,达到稳态输出。

3.1实验内容与方法3.1.1实验内容编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。

具体要求如下:(4) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+-输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。

② 求出系统的单位脉冲响应,画出其波形。

(5) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。

(6) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。

1) 用实验方法检查系统是否稳定。

输入信号为u(n)时,画出系统输出波形。

给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。

3.1.2实验方法在时域求系统响应的方法有两种, 第一种是通过解差分方程求得系统输出, 注意要合理地选择初始条件; 第二种是已知系统的单位脉冲响应, 通过求输入信号和系统单位脉冲响应的线性卷积求得系统输出。

用计算机求解时最好使用MATLAB 语言进行。

(2) 实际中要检验系统的稳定性, 其方法是在输入端加入单位阶跃序列, 观察输出波形, 如果波形稳定在一个常数值上, 系统稳定, 否则不稳定。

(3) 谐振器具有对某个频率进行谐振的性质, 本实验中的谐振器的谐振频率是0.4 rad,因此稳定波形为sin(0.4n)。

4) 如果输入信号为无限长序列, 系统的单位脉冲响应是有限长序列, 可用分段线性卷积法求系统的响应。

如果信号经过低通滤波器, 则信号的高频分量被滤掉, 时域信号的变化减缓, 在有阶跃处附近产生过渡带。

因此, 当输入矩形序列时, 输出序列的开始和终了都产生了明显的过渡带。

第4章 设计结果及分析4.1程序设计结果及分析1.给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1),输入信号x1(n)=R8(n)x2(n)=u(n)a)分别求出系统对x1(n)=R8(n)和x2(n)=u(n)的响应序列,并画出其波形。

b)求出系统的单位冲响应,画出其波形。

系统响应及系统稳定性调用filter解差分方程,由系统对u(n)的响应判断稳定性A=[1, -0.9]; B=[0.05, 0.05];系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1, 50)];产生信号x1n=R8nx2n=ones(1, 128);产生信号x2n=unhn=impz(B, A, 58);求系统单位脉冲响应h(n)subplot(2, 2, 1); y=′h(n)′; tstem(hn, y);调用函数tstem绘图title(′(a) 系统单位脉冲响应h(n)′)y1n=filter(B, A, x1n); %求系统对x1n的响应y1nsubplot(2, 2, 2); y=′y1(n)′; tstem(y1n, y);title(′(b) 系统对R8(n)的响应y1(n)′)y2n=filter(B, A, x2n);求系统对x2n的响应y2nsubplot(2, 2, 4); y=′y2(n)′; tstem(y2n, y);title(′(c) 系统对u(n)的响应y2(n)′)系统响应2.给定系统的单位脉冲响应为h1(n)=R10(n),h2(n)=δ(n)+2.5δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

调用conv函数计算卷积x1n=[1 1 1 1 1 1 1 1 ];产生信号x1n=R8nh1n=[ones(1, 10) zeros(1, 10)];h2n=[1 2.5 2.5 1 zeros(1, 10)];y21n=conv(h1n, x1n);y22n=conv(h2n, x1n);figure(2)subplot(2, 2, 1); y=′h1(n)′; tstem(h1n, y);调用函数tstem绘图title(′(d) 系统单位脉冲响应h1(n)′)subplot(2, 2, 2); y=′y21(n)′; tstem(y21n, y);(4)title(′(e) h1(n)与R8(n)的卷积y21(n)′)subplot(2,2,3);y=′h2(n)′;tstem(h2n,y);调用函数tstem绘图title(′(f) 系统单位脉冲响应h2(n)′) subplot(2,2,4);y=′y22(n)′;tstem(y22n,y);title(′(g) h2(n)与R8(n)的卷积y22(n)′)3. 给定一谐振器的差分方程为y(n)=1.8237y(n-1)-0.980y(n-2)+b0x(n)-b0x(n-1)令 b0=49.100/10,谐振器的谐振频率为0.4rad。

a)用实验方法检查系统是否稳定。

输入信号为)(nu时,画出系统输出波形。

b) 给定输入信号为 x(n)= sin(0,014n)+sin(0.4n)求出系统的输出响应,并画出其波形。

un=ones(1,256);%产生信号unn=0:255;xsin=sin(0.014*n)+sin(0.4*n) ;产生正弦信号A=[1,-1.8237, 0.9801];B=[1/100.49, 0,-1/100.49];系统差分方程系数向量B和Ay31n=filter(B, A, un);谐振器对un的响应y31ny32n=filter(B, A, xsin);谐振器对正弦信号的响应y32nfigure(3)subplot(2, 1, 1); y=′y31(n)′; tstem(y31n, y)title(′(h) 谐振器对u(n)的响应y31(n)′)subplot(2, 1, 2); y=′y32(n)′; tstem(y32n, y);title(′(i) 谐振器对正弦信号的响应y32(n)′)总结.这几天的课设更加加深了对数字信号处理这门课的理解,尤其是我们所做的这个课题的一些问题,有了更深一层的体会,和我一起的陈维多两个人在做这个课程设计,也从他那里学到了很多东西,再加上自己的看书总结,收获挺多。

相关主题