当前位置:文档之家› 第三章细胞生物学研究方法

第三章细胞生物学研究方法

用途:于分离细胞器与生物大分子及其复合物 差速离心:分离密度不同的细胞组分 密度梯度离心:精细组分或生物大分子的分离
将光程差或differential-interference microscope)
偏振光经合成后,使样品中厚度上的微小区别转化成 明暗区别,增加了样品反差且具有立体感。适于研究 活细胞中较大的细胞器
录像增差显微镜技术(video-enhance microscopy)
三、 扫描遂道显微镜
Scanning Probe Microscope,SPM (80年代发展起来的检测样品微观结构的仪器) 包括:STM、AFM、磁力显微镜、摩擦力显微镜等
原理:扫描探针与样品接触或达到很近距离时,即产生彼此间相互作用力,如 量子力学中的隧道效应(隧道电流)、原子间作用力、磁力、摩擦力等, 并在计算机显示出来,从而反映出样品表面形貌信息、电特性或磁特性等。
分析技术相结合,是当前结构生物学(Structural Biology)
——主要研究生物大分子空间结构及其相互关系的主要实验手段。
扫描电镜
原理与应用: 电子“探针”扫描,激发样品表面放出二次电子,
探测器收集二次电子成象。 CO 2临界点干燥法防止引起样品变形的表面张
力问题
一、 离心分离技术
如绿色荧光蛋白(GFP)的应用
激光共焦扫描显微镜技术 (Laser Scanning Confocal
Microscopy)
原理
应用:
排除焦平面以外光的干扰,增强 图像反差和提高分辨率(1.4—1.7), 可重构样品的三维结构。
相差显微镜(phase-contrast microscope)
二、 电子显微镜技术
电子显微镜的基本知识
电镜与光镜的比较 电镜与光镜光路图比较 电子显微镜的基本构造
主要电镜制样技术
负染色技术 冰冻蚀刻技术 超薄切片技术 电镜三维重构技术
扫描电镜(Scanning electron microscope,SEM) SPM(Scanning probe microscope)
计算机辅助的DIC显微镜可在高分辨率下研究活 细胞中的颗粒及细胞器的运动
电镜与光镜的比较
显微镜 分辨本领 光源
透镜
真空
成像原理
LM 200nm 可见光 玻璃透镜 不要求真空 利用样品对光的吸收形
(400-700)
成明暗反差和颜色变化
100nm 紫外光 玻璃透镜 不要求真空 (约200nm)
TEM
0.1nm
结构与功能(动态特征); 细胞的生命活动 ; 实验科学与实验技术——细胞真知源于实验室
——What we know//How we know.
第三章 细胞生物学研究方法
细胞形态结构的观察方法 细胞组分的分析方法 细胞培养、细胞工程与显微操作技术
第一节 细胞形态结构的观察方法
光学显微镜技术(light microscopy)
用途:纳米生物学研究领域中的重要工具,在原子水平上揭示样本表面的结构。
普通复式光学显微镜技术
光镜样本制作 分辨率是指区分开两个质点间的最小距离
荧光显微镜技术(Fluorescence Microscopy)
原理与应用
直接荧光标记技术 间接免疫荧光标记技术 在光镜水平用于特异蛋白质
等生物大分子的定性定位:
电子显微镜技术 (Electro microscopy) 扫描探针显微镜(Scanning Probe Microscope) 扫描遂道显微镜 (scanning tunneling microscope )
第二节 细胞组分的分析方法
离心分离技术 细胞内核酸、蛋白质、酶、糖与脂类等的显示方法 特异蛋白抗原的定位与定性 细胞内特异核酸的定位与定性 放射自显影技术 定量细胞化学分析技术
染色背景,衬托出样品的精细结构 冰冻蚀刻技术(Freeze etching) (技术示意图)
冰冻断裂与蚀刻复型:主要用来观察膜断裂面的蛋白质颗粒 和膜表面结构。 快速冷冻深度蚀刻技术(quick freeze deep etching) 电镜三维重构技术 电子显微术、电子衍射与计算机图象处理相结合而形成的 具有重要应用前景的一门新技术。 电镜三维重构技术与X-射线晶体衍射技术及核磁共振
第三章 细胞生物学研究方法
进行初步观察 形成可验证的假说
查阅已 有知识
设计对照试验 收集资料
解释结果
生物学研究模式生物 不同物种享有共同分子机制
作出合理结论
如何学习细胞生物学?
抽象思维与动态观点 结构与功能统一的观点 同一性(unity)和多样性(diversity)的问题 细胞生物学的主要内容:
装置:扫描的压电陶瓷,逼近装置,电子学反馈控制系统和数据采集、处理、显示 系统。
特点:(1)可对晶体或非晶体成像,无需复杂计算,且分辨本领高。 (侧分辨率为0.1~0.2nm,纵分辨率可达0.01nm); (2)可实时得到样品表面三维图象,可测量厚度信息; (3)可在真空、大气、液体等多种条件下工作;非破坏性测量。 (4)可连续成像,进行动态观察
电子束 电磁透镜 (0.01-0.9)
要求真空
1.33x10-5~ 1.33x10-3Pa
利用样品对电子的散射 和透射形成明暗反差
电镜与光镜光路图比较
电子显微镜的基本构造
主要电镜制样技术
超薄切片技术 用于电镜观察的样本制备示意图 负染色技术(Negative staining)与金属投影
第三节 细胞培养、细胞工程与显微操作技术
细胞的培养 细胞工程
一、光学显微镜技术(light microscopy)
普通复式光学显微镜技术 荧光显微镜技术(Fluorescence Microscopy) 激光共焦扫描显微镜技术(Laser Confocal Microscopy) 相差显微镜(phase-contrast microscope) 微分干涉显微镜 (differential interference contrast microscope, DIC) 录像增差显微镜技术(video-enhance microscopy)
相关主题