相互作用1.如图所示,横截面为直角三角形的斜劈A ,底面靠在粗糙的竖直墙面上,力F 通过球心水平作用在光滑球B 上,系统处于静止状态.当力F 增大时,系统还保持静止,则下列说法正确的是( ) A .A 所受合外力增大 B .A 对竖直墙壁的压力增大 C .B 对地面的压力一定增大 D .墙面对A 的摩力可能变为零2.在竖直墙壁间有质量分别是m 和2m 的半圆球A 和圆球B ,其中B 球球面光滑,半球A 与左侧墙壁之间存在摩擦.两球心之间连线与水平方向成30°的夹角,两球恰好不下滑,设最大静摩擦力等于滑动摩擦力,(g 为重力加速度),则半球A 与左侧墙壁之间的动摩擦因数为( ) A.23 B.33C.43D.3323.如图甲所示,在粗糙水平面上静置一个截面为等腰三角形的斜劈A ,其质量为M ,两个底角均为30°.两个完全相同的、质量均为m 的小物块p 和q 恰好能沿两侧面匀速下滑.若现在对两物块同时各施加一个平行于斜劈侧面的恒力F1,F2,且F1>F2,如图乙所示,则在p 和q 下滑的过程中,下列说法正确的是( ) A .斜劈A 仍保持静止B .斜劈A 受到地面向右的摩擦力作用C .斜劈A 对地面的压力大小等于(M+2m )gD .斜劈A 对地面的压力大于(M+2m )g4.如图所示,在质量为m=1kg 的重物上系着一条长30cm 的细绳,细绳的另一端连着一个轻质圆环,圆环套在水平的棒上可以滑动,环与棒间的动摩擦因数μ为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环50cm的地方,当细绳的端点挂上重物G,而圆环将要开始滑动时,(g取10/ms2)试问:(1)角ϕ多大?(2)长为30cm的细绳的张力是多少:(3)圆环将要开始滑动时,重物G的质量是多少?4.如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,杆的A端用铰链固定,光滑轻小滑轮在A点正上方,B端吊一重物G,现将绳的一端拴在杆的B端,用拉力F将B端缓缦上拉,在AB杆达到竖直前(均未断),关于绳子的拉力F和杆受的弹力FN的变化,判断正确的是()A.F变大B.F变小C.F N变大D.F N变小5.如图所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。
现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前() A.绳子越来越容易断,B.绳子越来越不容易断,C.AB杆越来越容易断,D .AB 杆越来越不容易断。
6.如图所示,一根轻质细绳跨过定滑轮连接两个小球A 、B ,它们都穿在一根光滑的竖直杆上,不计细绳与滑轮之间的摩擦,当两球平衡时OA 绳与水平方向的夹角为60°,OB 绳与水平方向的夹角为30°,则球A 、B 的质量之比和杆对A 、B 的弹力之比分别为( ) A.B A m m =13 B.B A m m =33 C.NB NA F F =33D.NB NA F F =牛顿1.如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内),与稳定在竖直位置相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定2.图示为索道输运货物的情景.已知倾斜的索道与水平方向的夹角为37°,重物与车厢地板之间的动摩擦因数为0.30.当载重车厢沿索道向上加速运动时,重物与车厢仍然保持相对静止状态,重物对车厢内水平地板的正压力为其重力的1.15倍,那么这时重物对车厢地板的摩擦力大小为()A.0.35mg B.0.30mg C.0.23mg D.0.20mg3.一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图所示,以竖直向上为a的正方向,则人对地板的压力()A.t=2s时最大B.t=2s时最小C.t=8.5s时最大D.t=8.5s时最小4.以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一物体所受空气阻力大小与物体速率成正比,下列用虚线和实线描述两物体运动的v-t图象可能正确的是()5.一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其它力保持不变,则质点的加速度大小a和速度大小v的变化情况是()A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大6.如图,质量为M、长为L、高为h的矩形滑块置于水平地面上,滑块与地面间动摩擦因数为μ;滑块上表面光滑,其右端放置一个质量为m的小球.用水平外力击打滑块左端,使其在极短时间内获得向右的速度v0,经过一段时间后小球落地.求小球落地时距滑块左端的水平距离.7.如图,水平地面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m 的光滑球.静止时,箱子顶部与球接触但无压力.箱子由v 开始向右做匀加速运动,当速度达到2v 时,立即改做加速度大小为a 的匀减速运动直至静止,从加速开始经过的总路程为s . (1)求箱子加速阶段的加速度大小a ′.(2)若a >gtan θ,求减速阶段球受到箱子左壁和顶部的作用力.8.在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉力大小为F ;当机车在西边拉着这列车厢以大小为32a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( )A .8B .10C .15D .189.如图所示,倾角为θ的斜面体C 置于粗糙水平面上,物块B 置于斜面上,已知B 、C 间的动摩擦因素为μ=tan θ,B 通过细绳跨过光滑的定滑轮与物块A 相连,连接B 的一段细绳与斜面平行,A 、B 的质量分别为m 、M .现给B 一初速度,使B 沿斜面下滑,C 始终处于静止状态,则在B 下滑过程中,下列说法正确的是( )A .无论A 、B 的质量大小关系如何,B 一定减速下滑 B .A 运动的加速度大小为a=Mm mgC .水平面对C 一定有摩擦力,摩擦力方向可能水平向左D .水平面对C 的支持力与B 、C 的总重力大小相等10.如图,物块A 和B 的质量分别为4m 和m ,开始AB 均静止,细绳拉直,在竖直向上拉力F=6mg 作用下,动滑轮竖直向上加速运动.已知动滑轮质量忽略不计,动滑轮半径很小,不考虑绳与滑轮之间的摩擦,细绳足够长,在滑轮向上运动过程中,物块A 和B 的加速度分别为( )A. a A =21g ,a B =5gB. a A=a B=51g C . a A =41g , a B =3g D. a A =0 ,a B =2g11.如图甲,水平地面上有一静止平板车,车上放一质量为m 的物块,物块与平板车的动摩擦因数为0.2,t=0时,车开始沿水平面做直线运动,其v-t 图象如图乙所示.g 取10m/s2,平板车足够长,则物块运动的v-t 图象为( )12.如图甲所示,一质量为M 的长木板静置于光滑水平面上,其上放置一质量为m 的小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则()A.小滑块的质量m=4kgB.当F=8 N时,滑块的加速度为2m/s2C.滑块与木板之间的动摩擦因数为0.1D.力随时间变化的函数关系一定可以表示为F=6t(N)13.如图所示,带支架的动力平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对小车静止在右端,B与小车平板间的动摩擦因数为μ.若某时刻观察到细线偏离竖直方向θ角,则该时刻()A.小车对物块B的摩擦力可能为零B.物块B相对小车一定有向左滑的趋势C.小车的加速度大小一定为gtanθD.小车对物块B的摩擦力的大小可能为mgtanθ14. 如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为21μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F=25μmg 时,A 的加速度为31μg C .当F >3μmg 时,A 相对B 滑动 D .无论F 为何值,B 的加速度不会超过21μg15.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑.已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A 与B 的质量之比为( ) A.211μμ B.21211μμμμ- C.21211μμμμ+ D.21212μμμμ+16.如图所示,小车A 的顶部距地面高度为H=0.8m ,小车质量m1=2kg ,它受地面阻力大小为其对地面压力大小的0.2倍,在其顶部右前方边缘处放有一个质量为m2=8kg 的物体B (大小忽略不计),物体B 与小车A 之间的最大静摩擦力为Ff=28N .在小车的左端施加一个水平向左,大小为F0=6N 的恒力作用,整个装置处于静止状态.现用一逐渐增大的水平力F 作用在B 上,使A 、B 共同向右运动,当F 增大到某一值时,物体B 刚好从小车前端脱离.重力加速度g=10m/s2.(1)求物体B 刚好从小车前端脱离时水平力F 的大小.(2)若物体B 刚好从小车前端脱离时,小车A 、物体B 的共同速度大小为2m/s ,此时立即撤去水平力F ,计算当物体B 落地时与小车A 右前端的水平距离.17.如图所示,小车上固定一水平横杆,横杆左端的固定斜杆与竖直方向成α角,斜杆下端连接一质量为m 的小球;横杆右端用一根细线悬挂相同的小球.当小车沿水平面做直线运动时,细线与竖直方向间的夹角β(β≠α)保持不变.设斜杆、细线对小球的作用力分别为F1、F2,下列说法正确的是()A.F1、F2大小相等B.F1、F2方向相同C.小车加速度大小为gtanαD.小车加速度大小为gtanβ18.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示,当此车减速上坡时,乘客()A.处于超重状态B.不受摩擦力的作用C.受到向后(水平向左)的摩擦力作用D.所受合力竖直向上19.趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M、m,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力及空气阻力不计,则()A.运动员的加速度为gtanθB.球拍对球的作用力为mgC.运动员对球拍的作用力为(M+m)gcosθD.若加速度大于gsinθ,球一定沿球拍向上运动20.如图a所示,在木箱内粗糙斜面上静止质量为m的物体,木箱竖直向上运动的速度v与时间t的变化规律如图b所示,物体始终相对斜面静止.斜面对物体的支持力和摩擦力分别为N和f,则下列说法正确的是()A.在0~t1时间内,N增大,f减小B.在0~t1时间内,N减小,f增大C.在t1~t2时间内,N增大,f增大D.在t1~t2时间内,N减小,f减小21.如图(甲)所示,为一倾角θ=37°的足够长斜面,将一质量为m=1kg的物体无初速度释放在斜面上,同时施加一沿斜面向上的拉力,拉力随时间变化的关系图象如图(乙)所示,物体与斜面间的动摩擦因数μ=0.25.取g=10m/s2,求:(1)2s末物体的速度;(2)前16s内物体发生的位移.22.如图所示,a、b两物体的质量分别为m1、m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2.则()A.a1=a2,x1=x2B.a1<a2, x1=x2C.a1=a2,x1>x2D.a1<a2,x1>x223.如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k,一端固定在倾角为θ的斜面底端,另一端与物块A连接,两物块A、B质量均为m,初始时均静止,现用平行于斜面向上的力F拉动物块B,使B做加速度为a的匀加速运动,A、B两物块在开始一段时间内的v-t关系分别对应图乙中A、B图线t1时刻A、B的图加速度为g,则下列说法正确的是()A.t l时刻,弹簧形变量为kma +2mgsinθB.t2时刻,弹簧形变量为kmgsinθC.t l时刻,A,B刚分离时的速度为kma) -a(mgsinθD.从开始到t2时刻,拉力F先逐渐增大后不变24.静止在水平面上的A、B两个物体通过一根拉直的轻绳相连,如图,轻绳长L=1m,承受的最大拉力为8N,A的质量m1=2kg,B的质量m2=8kg,A、B与水平面间的动摩擦因数μ=0.2,现用一逐渐增大的水平力F作用在B上,使A、B向右运动,当F增大到某一值时,轻绳刚好被拉断(g=10m/s2).(1)求绳刚被拉断时F的大小.(2)若绳刚被拉断时,A、B的速度为2m/s,保持此时的F大小不变,当A静止时,A、B间的距离为多少?。