当前位置:文档之家› 小波变换基本原理.doc

小波变换基本原理.doc

第五章小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定?—尺度②小波发展史1910 Harr 小波80 年代初兴起Meyer—小波解析形式小波80 年代末 Mallat 多分辨率分析— WT 无须尺度构造?和小波函数—滤波器组实现90 年代初 Daubechies 正交小波变换90 年代中后期 Sweblews 第二代小波变换③小波变换与短时傅里叶变换比较a.适用领域不同 b.STFT 任意窗函数WT(要容许性条件)④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例)Daubechies正交小波构造MRA 的滤波器实现⑤小波的历史地位仍不如FT,并不是万能的5.1连续小波变换一. CWT 与时频分析1t b1.概念: CWT (a, b)S(t) * ()dtaa2.小波变换与 STFT 用于时频分析的区别STFT小波变换基函数(t )(t mT )e jwt(t)1* ( t b )a a时频轴平移 +调制(线性频轴)平移+伸缩 a —尺度—对数频轴基函数特包络恒定,振荡不同振荡恒定,包络恒定征时频分辨(t mT )e jwt,[mT,w]附近w0附近b, 率 a适用情况渐变信号突变信号2 轴spectrogram scalogram结果复数实数3.WT 与 STFT 对比举例( Fig5–6, Fig5–7)二. WT 几个注意的问题1.WT 与(t) 选择有关—应用信号分析还是信号复原2.母小波(t ) 必须满足容许性条件2( w)C dww①隐含要求(0) 0,即(t) 具有带通特性②利用 C可推出反变换表达式S(t) 1 1 CWT (a,b) (t b)dadbC a 2 a3.CWT 高度冗余(与 CSTFT 相似)4.二进小波变换(对平移量 b 和尺度进行离散化)2 m , b n 2 m 1 ( t b)m(2m t n)a a,b (t )m,n (t ) 2 2a adm,n CWT (2 m , n 2 m ) S(t ) m,n * (t) dt 5.小波变换具有时移不变性S(t ) C W T(a, b)S(t b0 ) C WT(a,b b0 )6.用小波重构信号S(t)? ?d m,n m,n (t )正交小波 d m,n m,n (t ) m n mn中心问题:如何构建对偶框架?m, n如何构建正交小波?5.2 分段逼近学习目的—理解 MRA一.分段逼近的引入很显然采样率越高,T s越小,PAM逼近误差越小,采样率无误信号近似ADC 差T s 1t f s1.采样率增大的尺度体现11, 0 t 1(t)0,其它1 t 用平移的(t ) 版本对S(t)作近似逼近函数(t n) 2 ( 2t n)S(t) C0,n (t n) S(t) 2 C1, n (2t n)1 尺度 an n 2m一般式: S(t) 2 2 C m,n (2m t n) 尺度 a 2 mnm ,a 0, 逼近收敛于S( )m 0, a , 逼近0(t)2.两尺度函数间关系 1 张成 V0空间(t)(2t)(2t 1)1 ①张成空间满足 V0 V11 (2t)空间②两尺度空间差异在哪?张成 V13.表征细节的小波变换的引入121 (2t 1)(t )(2t)(t ) (t)2 (t ) 表细节发现(t) (t )(2t 1)2S( t)2 C1, n (2t n)nn 2m,2m 12C1, 2 m (2t 2m) C1, 2 m 1 (2t 2m 1)m m2 C1,2m(t m) (t m) (t m) (t m)2C1, 2m 12 m mmC1,2 nC1, 2 n 1(tC1,2 nC1, 2n 1(t n) n2n)2m nV1 V0 W0 4.推广m=-1 V 1尺度m=0V0m=1V0m=2V1 W0V1W1V2V1V1W0VV1V W 1W1WVmWm W 2 W 1 W0 2W1WV m Wm 3Wm 2 W m 1, mm , 逼近精度V lim V m W 2 W 1 W0 W1mm , 逼近精度V 0m2 2 (2m t n) 包含信息量决定形成最简单的 MRA二.分段逼近与小波变换(哈尔小波)1.信号的尺度逼近与小波表示m尺度逼近 2 2C m,n ( 2m t n)S(t )nm小波表示 S(t )d m,n 2 2 (2m t n)Harr 小波mn2.Harr 小波特性①同一尺度平移正交性:(t n) * (t n )dt( n n )同尺度 m 也满足m,n(t )m,n * (t) dt(n n )作变量替换即可证明②尺度,平移均正交(m m )m,n (t ), m , n (t )2 2(2m t n) * ( 2m t n ) dtm, m n ,nm信号在正交基函数上投 影即为小波系数2 2 (2m t n) 形成正交基mS(t) * (2 m t n)dtd m ,n 2 2分段逼近的推广 —MRA 一.多分辨率分析含义①由内空间 0 V m 1V mVm 1组成②若 V 0 空间尺度函数 (t) 平移正交: (t ) * (t n) ( n)则(t )为 V 0 空间尺度函数 ,任一函数 S(t)可用 (t) 表示S(t )C n (t n)nC n S(t) * (t n)dt③ S(t) V m 当且仅当 S( 2t) V m 1成立④ V m 交集为 0V mm⑤平方可积空间即为 V m 并集逼近lim V mL 2 (R)m问题: Harr 小波构成最简单 MRA如何构造选其它具体的 MRA 体系二.正交小波函数的系统构造1.两尺度方程引入①低通滤波器与尺度关系Harr 小波满足(t)(2t )(2t 1) 2 1 (2t ) 1(2t 1)22 h 01 1满足 ( t) 2 h 0 (n) (t n) 卷积关系2 22 n②频域反映令 h 0 (n)H 0 (w)(t)(w)( t2 ( 2w))2h 0 H 0 ( w) (w)2 (2w) 2H 0 (w) ( w)即 (2w) H 0 (w) ( w)③含义a. H 0 (0) 1, h 0 (n)为 LPFb .根据 MRA , ( w) H 0w w H 0 ( w( ) ( ) 2 k ) (0)22k 1c. (0) 12.QMF 的引入① (t) 的尺度正交关系的频域反映(t) * (tn)(n)(t n)e j n w (w)频域也正交1 ( w) * (w) e jnw dw(n)2n两边对 n 求和1 ( w) * (w) e inw dw 12n利用泊松求和公式f ( n)e jnwF (w 2n )nn(令 f (n) 1,则 F ( w)2 (w) ) 有ejnw2( w 2n )nn1 e jnw( w2n )2nn(w) * ( w)n( w 2n ) dw 12( w 2n ) dw 1(w)n即:(w 2n 21(w21)2k )nk② QMF 正交镜像滤波器组的导出利用两尺度关系(wk ) H 0 (w2k )1k22对 k 分奇偶讨论ww2ww2nH 0 ( 2 2n ) ( 2 2n )nH 0 ( 2 (2n1) ) ( 2(2n 1) )12222H 0 ( w)(w2n )H 0 (w)(w(2n 1) )12n22n2( w) 2(w2H 0H 0 )122H 0 ( w) 2H 0 (w2H 0 (w) H 0 * ( w) H 0 ( w )H 0 * (w 2) 1)③含义a.H 0 (0) 1 H 0 ( ) 1, H 0 (w ) 为H 0 (w)镜像b.功率互补条件 —半带条件P( w) H 0 (w) H 0 * ( w)1H 0 (w2)H 0 (w) 223.正交小波滤波器满足的条件①频域关系根据( x), ( x k) 0 可推出H 0 (w)H 1 * (w) H 0 (w) H 1 * ( w) 0上式的解为 H 1 (w)e jw H 0 * (w)②时域关系令 h 1 ( n)H 1 ( w) h 0 ( n) H 0 (w) 根据 H (w)h( n)e jnwnh 0 ( n) H 0 * ( w)( 1)n h 0 ( n) H 0 * ( w) ( 1) n 1 h 0 (1 n) e jw H 0 * (w ) h 1 (n) ( 1) n h 0 (1 n)e jw H 0 * ( w)③易证 H 1 (w)也为 QMF④小波滤波器同样满足两尺度关系(t)2h 1 ( k) (2t k)k( w) H 1 ( w) ( w) H 1 ( w ) H 0 ( w)2 2 2 k 2 2k 4.尺度与小波滤波器频域关系的矩阵表示H 0 (w) H 1 ( w) H 0 ( w) H 0 ( w ) H 0 (w) H 1 * (W) H 1 ( w) H 1 ( w ) 5. m,n (t) 与 m ,n (t ) 的 MRA 解释m,n(t )W m正交补L2Wm,n(t )V mm 1S(t )d m,nm,n(t )mnd m, n S(t ) m,n * (t)dt1 0 0 1WmWm 1例:求 Harr 小波的频域尺度函数和小波函数1 1 h 11 1 h 0222 2wj w 2wjw解: ( w)H 0 ( e Cos(22 k )2 k 1)ek 1k 1Sin( w2)w 2h 1 (n)e jnw1 (1 e jw )jww ) H 1 (w)j e 2 Sin(n22ww w 4) 2(S i n(w) H 1 ( 2 ) ( 2 )(w) w4其频域幅值图如 Fig5–13 所示可发现其缺陷在于波纹太大 (原因 —时域紧支撑)例:理想 LPF 也构成正交小波1w H 0 ( w)2 0其它Sin2 (1 n)解: h 0 (n) IFT H 0 ( w)(1 n)Sinc( )函数 Sinc 小波三.有关小波函数的一些概念1.小波消失矩 (vanishing moment )满足m 1 (k )t k (t) dt0, k 0,1, N 1 则称 (t )具有 N 阶 消 失 矩①母小波 (t ) 平滑度由消失矩决定,消失矩越大,则(w) 频域衰减越快(t ) 越平滑②消失矩越大,小波振荡程度越高2.小波正则度( regularity ) ①定义:小波 (t) 的连续可导次数②正则度为 n 的小波(t) 具有( n+1)阶消失矩(必要条件)四.问题讨论1.根据 MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由h0 ( n) 决定②不关心其解析表达式2.MRA 理论离散小波的数值实现滤波器组5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径1.不能直接对定义式离散化实现mdm,n S(t), m, n (t) S(t ),2 2 (2m t n)令l kT (T采样周期)当 m 较小时,2m t n 不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现( Mallat 算法)(根据尺度函数和小波函数)3.第二代小波变换: Swelden算法二. Mallat 算法1.两个近似假设① S(t)由某一尺度空间函数近似② C m,n由采样数据直接近似mC m,n 2 2S(t) * ( 2m t n)dt(t)( w)(t n) e (2m t n) e 由预测和更新滤波器进行交替提升实现n 1S(t ) C m0n m0n (t ) d k ,n kn (t) n k m0 njnw(w)jnw2m(2 m w) 2mm m2 2 ( 2m t n)2 2 e jn 2 m w (2 m w)1 mnC m,n2 2S( w) * (2 m w)e j 2m w dw2当分辨率 m 足够高时* (2 m w) 0mC m,n221S( w)e j 2 m nw dw2mm2 2 S(2 m n) 22S(t ) t 2m n故可直接用样本数据取代2.Mallat 算法①分解算法a.推导m*m 1S(t ) * ( 2m 1 tCm 1,nS(t )1 , n(t )dt 2 2 n) dt 2m 1S(t )* ( 2mt2n)dt2m 1两 尺 度 关 系 2 2S(t ) 2 h 0 (i ) * ( 2m t (2n i)) dtimh 0 (i )S(t )2 2 * ( 2m t (2ni ))dti2 h 0 (i)S(t),m, 2n i(t)2 h 0 (i )C m, 2 n iiii 2n i2 h 0 (i 2n)C m ,ii同理 d m 1, n 2h 1 (i 2n)C m, iib.滤波器组实现(滑动内积 +下采样)Cm,nH 0 * (w) 2Cm 1,nh 0 ( n)H 1 * (w) 2dm 1,nh 1 ( n)②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)C m,n2h0 (n 2i )C m 1,i h1 (n 2i )d m 1,ii ib.滤波器组实现(上采样 +滤波)dm 1, n2H 1 (w)S(i) Cm 1, n2H 0 (w)5.5小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用小波无法求解微分方程纯数字和物理地位不如FT二.信号检测方面应用发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性Gabor 变换:仍需长窗去包含振荡波形小波变换:小波基可任意窄三.降噪应用1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合高斯类噪声和脉冲噪声宽带噪声小波去噪2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关)3.滤波手段①传统方法: Prony 参数建模法②小波降噪a. 信号系数阈值比较反变换输出小波变换分解重构b.可证明其统计最优性c.阈值比较(阈值 T 可基于信号标准差得出)硬阈值:比较 d m,n软阈值:考虑 d m,n符号,及其其它系数相关性4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小NI 信号处理工具箱。

相关主题