第五章 小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史③小波变换与短时傅里叶变换比较a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现⑤小波的历史地位仍不如FT ,并不是万能的5.1 连续小波变换一.CWT 与时频分析 1.概念:⎰+∞∞--ψ=dt abt t S ab a CWT )(*)(1),( 2.小波变换与STFT 用于时频分析的区别小波 构造?1910 Harr 小波80年代初兴起 Meyer —小波解析形式80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现90年代初 Daubechies 正交小波变换90年代中后期 Sweblews 第二代小波变换3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原2.母小波)(t ψ必须满足容许性条件 ∞<ψ=⎰∞+∞-ψdw ww C 2)(①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式⎰⎰+∞∞-+∞∞-ψ-ψ=dadb ab t b a CWT a C t S )(),(11)(23.CWT 高度冗余(与CSTFT 相似)4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1)(2,22,,n t t a b t at n b a m mn m b a mm-ψ=ψ⇒-ψ=⇒•==--ψdt t t S n CWT d n m m m n m )(*)()2,2(,,⎰+∞∞---ψ=•=5.小波变换具有时移不变性),()(),()(00b b a CWT b t S b a CWT t S -↔-↔6.用小波重构信号 ∑∑∑∑+∞-∞=+∞-∞=+∞-∞=+∞-∞=ψψ=m n m n nm nm nm n m t dt d t S )(ˆ)(ˆ)(,,,,正交小波 中心问题:如何构建对偶框架{}n m ,ˆψ如何构建正交小波?5.2 分段逼近P1. =)(t φ逼近函数)2(2)(n t n t -→-φφ)2(2)()()(S ,1,0n t C t S n t C t nn nn -≈⇒-≈∑∑φφ 尺度21=a ⇒一般式:∑-=-≈nm m nm m a n t Ct S 2)2(2)(,2尺度φ)(,0,τS a m 逼近收敛于→∞→ 0,,0→∞→→逼近a m2.两尺度函数间关系 )12()2()(-+=t t t φφφ①张成空间满足10V V ⊂ ②两尺度空间差异在哪? 3.表征细节的小波变换的引入很显然采样率越高,s T 越小, 逼近误差越小,采样率∞→无误差发现2)()()12(2)()()2(t t t t t t ϕφφϕφφ-=-+=⇒∑-≈⇒nn n t C S )2(2)t (,1φ 12,2+=m m n⎥⎦⎤⎢⎣⎡--+-∑∑+m m m m m t C m t C )122()22(212,12,1φφ⎥⎦⎤⎢⎣⎡---+-+-=∑∑+m m m m m t m t C m t m t C 2)()(2)()(212,12,1ϕφϕφ ∑∑-•-+-•+→++nn n mn n n t C C n t C C n m )(2)(212,12,112,12,1ϕφ001W V V ⊕=⇒ 4.推广⇓⊕⊕⊕⊕⊕=⊕⊕=⊕=⇒----012011011W W W W V W W V W V V m m0121W W W V V ⊕⊕⊕=--∞- ↑⊕⊕⊕=---m W W W V m m m m ,123,lim ,1012=↓↓⊕⊕⊕⊕⊕==↑↑∞---∞→∞V m W W W W V V m m m 逼近精度逼近精度⎭⎬⎫⎩-)2(22n t m m ϕ包含信息量决定 →形成最简单的MRA尺 度2V二.分段逼近与小波变换(哈尔小波) 1.信号的尺度逼近与小波表示 尺度逼近 ∑→-nm nm m t S n t C)()2(2,2φ 小波表示 ∑∑+∞-∞=+∞-∞=-=m n m mnm n t dt S )2(2)(2,ϕ Harr 小波2.Harr 小波特性①同一尺度平移正交性:⎰+∞∞-'-='--)()(*)(n n dt n t n t δϕϕ②尺度,平移均正交 ⎰∞+∞-''''+''='-->=<n n m m m m m m n m n m dt n t n t t t ,,2)(,,)2(*)2(2)(),(δδϕϕϕϕ⇒⎭⎬⎫⎩⎨⎧-⇒形成正交基)2(22n t m m ϕ⎰∞+∞--=dt n t t S d mm n m )2(*)(22,ϕ影即为小波系数信号在正交基函数上投 分段逼近的推广—MRA 一.多分辨率分析含义①由内空间 ⊂⊂⊂⊂+-110m m m V V V 组成②若0V 空间尺度函数)(t ϕ平移正交:⎰+∞∞-=-)()(*)(n n t t δφφ则)(t ϕ为0V 空间尺度函数,任一函数S(t)可用表示)(t φ③成立当且仅当1)2()(+∈∈m m V t S V t S ④{}00=m mm V V 交集为⑤平方可积空间即为并集逼近m V )(lim 2R L V m m =∞→ 问题:Harr 小波构成最简单MRA⇓同尺度m 也满足⎰+∞∞-''-=)()(*)(,,n n dt t t n m n m δϕϕ 作变量替换即可证明⎰∑∞+∞--=-=dtn t t S C n t C t S n nn )(*)()()(φφ如何构造选其它具体的MRA 体系 二.正交小波函数的系统构造 1.两尺度方程引入 ①低通滤波器与尺度关系Harr 小波满足 ⎥⎦⎤⎢⎣⎡-+=-+=)12(21)2(212)12()2()(t t t t t φφφφφ∑-=⎥⎦⎤⎢⎣⎡=nn t n h th 卷积关系满足)()(2)2(212100φφ②频域反映令 )2(2)2()()()()(00w tw t w H n h φφφφ↔⇒↔↔)()(00w w H h φφ↔*⇒)()()2()()(2)2(200w w H w w w H w φφφφ==⇒即③含义a. LPF n h H 为)(,1)0(00=b .根据MRA ,∏∞==Φ=Φ100)0()2()2()2()(k k wH w w H w φc.1)0(=Φ 2.QMF 的引入①)(t φ的尺度正交关系的频域反映⎰+∞∞-=-)()(*)(n n t t δφφ⇒↔--)()(w e n t jnw φφ 频域也正交⎰∑+∞∞-=njnw n dw e w w )()(*)(21δφφπ两边对n 求和 ⎰∑+∞∞-=⇒ninw dw e w w 1)(*)(21φφπ利用泊松求和公式∑∑+=-nnjnwn w F en f )2()(π(令)(2)(,1)(w w F n f πδ==则) 有 ∑∑+=-nnjnwn w e)2(2πδπ∑∑-=⇒nnjnwn w e)2(21πδπ⎰∑+∞∞-=-⇒ndw n w w w 1)2()(*)(πδφφ∑⎰+∞∞-=-ndw n w w 1)2()(2πδφ即:∑∑=+⇒=-knk w n w 1)2(1)2(22πφπφ② QMF 正交镜像滤波器组的导出 利用两尺度关系∑=++k k wH k w 1)2()2(20ππφ对k 分奇偶讨论1))12(2())12(2()22()22(2020=+++++++⇒∑∑nn n wn w H n w n w H πφππφπ1))12(2()2()22()2(22220=+++++∑∑nnn ww H n w wH πφππφ 1)2()2(2020=++⇒πwH w H1)2(*)()(*)()()(00002020=+++=++⇒πππw H w H w H w H w H w H ③含义a.镜像为)()(,1)(1)0(0000w H w H H H ππ+=⇒=b.功率互补条件—半带条件 )(*)()(00w H w H w P =20)(π+w H1π20)(w H3.正交小波滤波器满足的条件 ①频域关系根据0)(),(=-k x x φϕ可推出0)(*)()(*)(1010=+++ππw H w H w H w H 上式的解为 )(*)(01π+-=-w H e w H jw ②时域关系 令 ∑-=↔↔njnw e n h w H w H n h w H n h )()()()()()(0011根据)(*)1()1()()(*)1()1()(*)()1()(*)(0010010000πππ+↔--=+↔--+↔--↔-⇒---w H e n h n h w H en h w H n h w H n h jw n jwn n③易证 QMF w H 也为)(1④小波滤波器同样满足两尺度关系∏∑∞==Φ=-=20111)2()2()2()2()()2()(2)(k k kwH w H w w H w k t k h t ϕφϕ4.尺度与小波滤波器频域关系的矩阵表示⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++1001)()()()()(*)()()(11001010ππππw H w H w H w H W H w H w H w H 5.{}{}解释的与MRA t t n m n m )()(,,φϕ {}{}m nm mnm V t W t →→)()(,,φϕ 正交补 112+-⊕⊕⊕=⇒m m m W W W L⎰∑∑∞+∞-+∞-∞=+∞-∞===dtt t S d t dt S n m n m m n m n nm )(*)()()(,,,,ϕϕ例:求Harr 小波的频域尺度函数和小波函数⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2121212110h h 解: 2)2()2()2()(11210w w Sin e w Cos e w H w k k w j k w j k •===Φ∏∏∞=∞=-+- ∑⋅⋅=-==---nwj jwjnww Sin e j e e n h w H )2()1(21)()(211 4)4()()2()2()(21w w Sin w w w H w =⇒=Φ=ϕϕ 其频域幅值图如Fig 5–13所示可发现其缺陷在于波纹太大 (原因—时域紧支撑) 例:理想LPF 也构成正交小波⎪⎩⎪⎨⎧≤=其它021)(0πw w H解:[]())1()1(2)()(00n n Sin w H IFT n h --==ππ 小波函数Sinc Sinc →•)( 三.有关小波函数的一些概念 1.小波消失矩 (vanishing moment ) 满足 阶消失矩具有则称N t N k dt t t k m k )(1,1,0,0)()(1ϕϕ-===⎰+∞∞-①母小波)(t ϕ平滑度由消失矩决定,消失矩越大,则)(w ϕ频域衰减越快)(t ϕ越平滑②消失矩越大,小波振荡程度越高 2.小波正则度(regularity ) ①定义:小波)(t ϕ的连续可导次数②正则度为n 的小波)(t ϕ具有(n +1)阶消失矩(必要条件) 四.问题讨论1.根据MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由)(0n h 决定 ②不关心其解析表达式2.MRA 理论 离散小波的数值实现5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径 1.不能直接对定义式离散化实现)2(2),()(),(2,,n t t S t t S d m mn m n m -==ϕϕ 令 )(采样周期→=T kT l 当m 较小时,n t m -2不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现3.第二代小波变换:Swelden 算法 由预测和更新滤波器进行交替提升实现 二.Mallat 算法 1.两个近似假设①∑∑∑-=+=nn m k nkn nk n m n m t dt C t S t S 1,000)()()()(ϕφ似由某一尺度空间函数近②n m C ,由采样数据直接近似 ⎰∞+∞--=dt n t t S C m m n m )2(*)(22,φm m w jnm jnw w e n t w e n t w t m----•↔-⇒↔-⇒↔2)2()2()()()()(2φφφφφφ滤波器组(Mallat 算法) (根据尺度函数和小波函数))2(2)2(2222w e n t m wjn m mm m-⋅⋅---↔-⇒φφ⎰∞+∞---⋅=⇒dw e w w S C w nj m mnm m 22,)2(*)(221φπ当分辨率m 足够高时 0)2(*→-w m φnt m m m nwj mn m m mt S n S dwe w S C --=---∞+∞--==⋅≈⇒⎰22222,)(2)2(2)(212π故可直接用样本数据取代 2.Mallat 算法 ①分解算法 a.推导⎰⎰⎰∞+∞--∞+∞-∞+∞-----=-==-dtn t t S dtn t t S dt t t S C m m m m n m n m )222(*)(2)2(*)(2)()(1121*,1,1φφφ两尺度关系 ⎰∑∞+∞--+-⋅im m dt i n t i h t S ))2(2(*)(2)(2021φ∑∑∑⎰++∞+∞->=<⋅=+-=iiin m i n m im m C i h t t S i h dti n t t S i h 2,02,020)(2)(),()(2))2(2(*2)()(φφ∑-+='i i m C n i h in i ,0)2(22同理-=-i m n m C n i h d ,1,1)2(2②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)⎪⎭⎫⎝⎛-+-=∑∑--i i i m i m n m d i n h C i n h C ,11,10,)2()2(2b.滤波器组实现(上采样+滤波)5.5 小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用 小波无法求解微分方程纯数字和物理地位不如FT 二.信号检测方面应用 发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性 Gabor 变换 :仍需长窗去包含振荡波形 小波变换 : 小波基可任意窄 三.降噪应用 1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合 高斯类噪声和脉冲噪声 → 宽带噪声 → 小波去噪 2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关) 3.滤波手段①传统方法:Prony 参数建模法②小波降噪b.可证明其统计最优性c.阈值比较(阈值T 可基于信号标准差得出) 硬阈值:比较n m d ,软阈值:考虑n m d ,符号,及其其它系数相关性 4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小 NI 信号处理工具箱分解重构。