一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J3.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为12372Lt t t t g=++=4.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】解:(1)初始时:0E BLv =EI R r=+ 对棒2:F 安BIL ma ==解得:222010m/s B L v a R r==+(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mvq BL== (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL xq R r R rφ∆∆==++ 又mv q BL=解得:22()mv R r x B L +∆=则稳定后两棒的距离:22()2m mv R r d d x d B L +'=-∆=-=5.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg6.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的14画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。
现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。
开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。
重力加速度为g 。
求:(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式; (2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量; (3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。
【答案】(1)2122211()U R R t F ma R at +=+;(2)112Ut q R =;(3)2211121()2R Q ma h mgr R R =-+ 【解析】 【分析】利用法拉第电磁感应定律和电流公式联合求解。
根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。
【详解】(1) 金属杆运动到cd 时,由欧姆定律可得 11UI R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()U R R B R Lat +=;由开始运动经过时间t ,则 v=at 感应电流12BLvI R R =+金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma可得2122211()U R R tF ma R at +=+;(2) 金属杆从 ef 运动到cd 过程中,位移2112x at = 电阻R 1上通过的电荷量:q I t =∆12EI R R =+E t ∆Φ=∆ B S ∆Φ=∆S xL ∆=联立解得:112Ut qR =; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得212Q mv mgr =- 因此电阻R 1上产生的焦耳热为1112R Q Q R R =+ 可得2211121()2R Q ma h mgr R R =-+。
【点睛】此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。
7.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=导体棒切割磁感线产生的电动势为: E BLv =由闭合电路欧姆定律知:EI R r=+ 3.66/0.6x v m s t === 联立解得:0.4B T = (2)6()()()E BsLq It t t C R r t R r R r R r ∆Φ∆Φ======+∆+++ (3)由功能关系得:21sin 2mgx mv Q θ=+ 5.4R QQ R J R r==+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.8.如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L =0.4m ,上端接有电阻R =0.3Ω,虚线OO ′下方是垂直于导轨平面的匀强磁场,磁感强度B =0.5T 。