二面角求法之面面观求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题.总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事. 1 定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!.例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。
将题目略作变化,二面角A 1-BD-C 1的余弦值为 .在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得 cos ∠A 1OC 1=31例2(20XX 年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P.(Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。
分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=552,在△QMF 中,由余弦定理得cos ∠QMF=87-。
练习:20XX 广东高考理18.(本小题满分13分)如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形, 且∠DAB=60︒,2PA PD ==,PB=2, E,F 分别是BC,PC 的中点.DB 1图1AOA 1CBD 1C 1O 1M AFA 1QPBCECBPEF 图2(2)图2(1)Q(1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 解:(2) 由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 27PG BG PB PGB PG BG +-∠==-⋅.2 三垂线法这是最典型也是最常用的方法,当然此法仍扎“根”于二面角平面角的定义. 此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.最重要的是在“变形(形状改变)”和“变位(位置变化)”中能迅速作 出所求二面角的平面角,再在该角所在的三角形(最好是直角三角形,如图3中的Rt △PAB)中求解.对于钝二面角也完全可以用这种方法,锐角的补角不就是钝角吗?例3(20XX 年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:(Ⅰ)略;(Ⅱ)二面角A 1-AB -B 1的正弦值.分析与略解:所求二面角的棱为AB ,不像图3的那样一看就明白 的状态,但本质却是一样的,对本质的观察能力反映的是思维的深刻性.作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.过E 作EF ⊥A B 交AB 于F ,连接A 1F ,则得A 1F ⊥AB ,∴∠A 1FE 就是所求二面角的 平面角.依次可求得AB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23,则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .与图3中的Rt △PAB 比较,这里的Rt △A 1EF 就发生了“变形”和“变位”,所以要有应对各种变化,乃至更复杂变化的思想准备. 3 垂面法事实上,图1中的平面COC 1、图2(2)中的平面QMF 、图3中的平面PAB 、图4中的平面A 1FE 都是相关二面角棱的垂面,这种通过作二面角棱的垂面得平面角的方法就叫做垂面法.在某些情况下用这种方法可取得良好的效果.例4空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小. A图3αβPBl图4 B 1A αβA 1B lEF P图5βαlCBAGPASBSCSDSFE分析与略解:如图5,分别作PA ⊥α于A ,PB ⊥β于B ,则易知 l ⊥平面PAB ,设l ∩平面PAB=C ,连接PC ,则l ⊥PC.分别在Rt △PAC 、Rt △PBC 中,PC=3392,PA=4,PB=3,则AC=332,BC=335. 因为P 、A 、C 、B 四点共圆,且PC 为直径,设PC=2R ,二面角βα--l 的大小为θ. 分别在△PAB 、△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2·AC ·BCcos θ=PA 2+PB 2-2·PA ·PBcos(θπ-), 则可解得cos θ=21-,θ=120o ,二面角βα--l 的大小为120o . 4 面积法如图1,设二面角C-BD-C 1的大小为θ,则在Rt △COC 1中,cos BDC CBD S S BD O C BDCO O C CO1112121∆∆=⋅⋅==θ,在某些情况下用此法特别方便.例5 如图6,平面α外的△A 1B 1C 1在α内的射影是边长为1的正三角形ABC ,且AA 1=2,BB 1=3,CC 1=4,求△A 1B 1C 1所在的平面与平面α所成锐二面角的余弦值分析与略解:问题的情境很容易使人想到用面积法,分别在BB 1、CC 1取BD=CE=AA 1, 则△A 1B 1C 1≌△A 1DE ,可求得A 1B=2,A 1C 1=5,B 1C 1=2,所以等腰△A 1B 1C 1的面积为415,又正△ABC 的面积为43. 设所求二面角的大小为θ,则cos θ=55.5 变式二面角的求法以上列举了求解二面角的四种基本方法,但在现实中,问题往往不是那么简单与单纯,而是有诸多的变化,“源于基本方法,适应各种变化”就是我们总的策略. 5.1 “无棱”二面角的求法严格地说,任何二面角都是有棱的,“无棱”其实是指二面角的棱处于隐含的状态.对于这样的问题,有两种处理办法:(1)用面积法,见例5;(2)找出隐含的棱,此法可称为“找棱法”.在例5中,延长C 1B 1和C 1A 1分别交CB 和CA 的延长线于G 、H ,连GH. 作CM ⊥GH 于M ,连C 1M ,C 1M ⊥GH ,则∠CMC 1是所求二面角的平面角. 由平几知识得CG=4,CH=2,则△CGH 的面积为32,又△CGH 的面积为21CH ·CM. αD AM 图6E CB C 1A 1B 1H G又由余弦定理得GH=32,所以CM=2,则在Rt △CMC 1中,cos θ=55. 在原图中,面A 1B 1C 1与α的公共点都不知道,所以必须找出它们的两个公共点,才能找到二面角的棱;而在另一些问题中,知道两个面的一个公共点,那么只须再找出另一个公共点就可以了.面积法比找棱法似乎要简单些,但看问题不能简单化,例5的第二种解法是非常重要的一种方法,其中蕴涵的知识和技能的“营养”对于滋补人大大脑是十分有价值的,所以决不要忽视找棱法. 5.2 有关二面角的最值问题求最值是代数、三角、解几的“热点”问题,殊不知立体几何中也有引人入胜的最值问题. 例6 二面角α-l -β的大小是变量)20(πθθ<<,点B 、C 在l上,A 、D 分别在面α、β内,且AD ⊥BC ,AD 与面β成6π角,若△ABC 的面积为定值S ,求△BCD 面积Q 的最大值.分析与略解:如图9,作AE ⊥BC 于E ,连DE ,则由AD ⊥BC 得 BC ⊥平面ADE ,则DE ⊥BC ,∠AED=θ,∠ADE=6π. 在△AED 中,由正弦定理得6sin )6sin(ππθ+=AEDE,所以)6sin(2,6sin )6sin(πθππθ+=+=S Q S Q , 则当3πθ=时,有Q max =2S.△BCD 和△ABC 有公共的底边BC ,则它们的面积比等于对应高之比,这是简单的平几知识,但用在这里却发挥了以简驭繁的奇妙功能.三角函数与正弦定理给题目注入了新的活力.图7αEDCBA lβ。