第10章 无穷级数【学习目标】1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与P 级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
【能力目标】 【教学重点】1、级数的基本性质及收敛的必要条件。
2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos x e x x ,ln(1)x +和(1)a α+的麦克劳林展开式;【教学难点】1、 比较判别法的极限形式;2、 莱布尼茨判别法;3、 任意项级数的绝对收敛与条件收敛;4、 函数项级数的收敛域及和函数;5、 泰勒级数;【教学方法】启发式、引导式【教学课时分配】 (18学时)第1 次课 §1 第2 次课 §2 第3 次课 §3 第4 次课 §4 第5次课 §5 第6次课 §6 第7次课 §7 第8次课 §8 第9次课 习题课10. 1 常数项级数的概念和性质一、无穷级数的概念定义10.1 设有无穷序列 123,,, ,, n u u u u ⋅⋅⋅⋅⋅⋅, 则由此序列构成的表达式123 n u u u u +++⋅⋅⋅++⋅⋅⋅称为无穷级数, 简称级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项n u 叫做级数的一般项.如果(1,2,...)n u n =都为常数,则称该级数为常数项级数,简称数项级数;如果(1,2,...)n u n =为变量x 的函数()n u x ,则称该级数为函数项级数.二、数项级数的敛散性概念级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.定义10.2级数敛散性: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和n s 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值12n n n n R s s u u ++=-=++⋅⋅⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数) 20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中0a ≠, q 叫做级数的公比. 解 如果1q ≠, 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当1q <时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1. 当1q >时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果1q =, 则当1q =时, n s na =→∞, 因此级数n n aq ∑∞=0发散;当1q =-时, 级数n n aq ∑∞=0成为a a a a -+-⋅⋅⋅⋅⋅⋅,当1q =时, 因为n s 随着n 为奇数或偶数而等于a 或零, 所以n s 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述,级数n n aq ∑∞=0⎪⎩⎪⎨⎧≥∞<-=1||1||,1q q q a例2 证明级数1234+++⋅⋅⋅⋅⋅⋅是发散的. 证 此级数的部分和为2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n的收敛性.提示: 111)1(1+-=+=n n n n u n . 例4 证明调和级数1111 23n+++⋅⋅⋅++⋅⋅⋅是发散的.证:对题设级数按下列方式加括号111111111111()+(+++)+(+)+ 234567821222m m m ++++⋅⋅⋅++⋅⋅⋅+⋅⋅⋅++即得到新的级数12311111,,2342v v v ===+> 1111111+>2=, 2122222mm m m m m v ++=+⋅⋅⋅+⋅⋅⋅⋅++ 可见当m →∞时,m v 不趋近于零,故调和级数发散.小结:掌握无穷级数的概念、部分和数列及数项级数的敛散性,掌握调和级数和几何级数的敛散特性. 作业:练习10.110.2 收敛级数的基本性质性质1 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的, 级数 )1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质2 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks .性质3 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和,s σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s σ±.性质 4 级数收敛的必要条件: 如果∑∞=1n n u 收敛, 则它的一般项n u 趋于零, 即0lim 0=→n n u .性质5 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散.应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数1 3121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.证: 假若级数∑∞=11n n 收敛且其和为,n s s 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n 必定发散. 小结1.常数项级数的概念;2. 常数项级数的性质;教学方式及教学过程中应注意的问题在教学过程中要注意常数项级数的概念以及重要性质,要结合实例,反复讲解。
作业 练习10.210. 3 数项级数的收敛性判别法一、正项级数及其敛散性判别正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (k >0∀n ≥N ).若∑∞=1n n v 收敛, 则∑∞=1n n u 收敛;若∑∞=1n n u 发散, 则∑∞=1n n v 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅),即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数p >0. 提示级数]1)1(1[112--∞=--∑p p n n n 的部分和为111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s 所以级数]1)1(1[112--∞=--∑p p n n n 收敛. p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散.例2 证明级数∑∞=+1)1(1n n n 是发散的.证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛 则级数∑∞=1n n u 收敛 (2)如果+∞=>=∞→∞→nn n n n n v ul v u lim 0lim 或 且级数∑∞=1n n v 发散 则级数∑∞=1n n u 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时, 有不等式l l v u l l n n2121+<<-, 即n n n lv u lv 2321<<, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n 发散, 根据比较审敛法的极限形式, 级数∑∞=11sin n n 发散.例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→nn n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛.定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→nn n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的.例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性. 例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性. 提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→nn n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的. 并估计以级数的部分和s n近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n , 所以根据根值审敛法可知所给级数收敛. 以这级数的部分和s n 近似代替和s 所产生的误差为)3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + n n n )1(1+=. 例9判定级数∑∞=-+12)1(2n nn的收敛性 定理6(极限审敛法) 设∑∞=1n n u 为正项级数(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或 则级数∑∞=1n n u 发散(2)如果p >1而)0( lim +∞<≤=∞→l l u n n pn 则级数∑∞=1n n u 收敛例10 判定级数∑∞=+12)11ln(n n 的收敛性解 因为)(1~)11ln(22∞→+n n n 故11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→n n n n u n n n nn根据极限审敛法 知所给级数收敛例11 判定级数)cos 1(11nn n π-+∑∞=的收敛性解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn根据极限审敛法 知所给级数收敛 二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的.交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数. 定理7(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1. 简要证明: 设前n 项部分和为s n . 由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛. 设s 2ns (n), 则也有s 2n +1=s 2n +u 2n +1s (n), 所以s ns (n). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例12 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例13 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理8 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散, 则我们可以断定级数∑∞=1n n u 必定发散. 这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例14 判别级数∑∞=12sin n nna 的收敛性. 例15 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.小结1.利用部分和数列的极限判别级数的敛散性;2. 利用正项级数审敛法;3. 任意项级数审敛法:Leibniz 判别法。