高中数学竞赛中数论问题的常用方法数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法.1.基本原理为了使用方便,我们将数论中的一些概念和结论摘录如下:我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ϕ表示{1,2,…,m }中与m 互质的整数的个数,并称)(m ϕ为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ϕ中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ϕ}为模m 的简化剩余系.定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=.定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则11ni i i a x =∑≡21ni ii b x=∑;(2)若)(mod m b a ≡,),(b a d =,m d |,则)(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m dbd a ≡;(4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+;(3)设p 为素数,则在!n 质因数分解中,p 的指数为∑≥1k kpn.定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模m 的完全剩余系;(2)若{)(21,...,,m r r r ϕ}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ϕ}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ϕϕϕ=.(2)若n 的标准分解式为k kp p p n ααα (2)121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相同的素数,则)11)...(11)(11()(21kp p p n n ---=ϕ. 对于以上结论的证明,有兴趣的读者可查阅初等数论教材.2 方法解读对于数论试题,除直接运用数论的基本原理外,常用的基本方法还有因式(因数)分解法,配对法,分组法,估值法,同余方法,构造法,调整法,数学归纳法与反证法.下面分别予以说明2.1基本原理的应用例1 设正整数a ,b ,c 的最大公约数为1,并且c ba ab=- (1),证明:)(b a -是一个完全平方数. 证:设d b a =),(,d a a 1=,d b b 1=,其中1),(11=b a .由于1),,(=c b a ,故有1),(=c d .由(1)得c b c ad b a 1111-= (2)由(2)知,c b a 11|,又1),(11=b a ,∴ c a |1.同理可证c b |1,从而有c b a |11,设k b a c 11=,k 为正整数,代入(2)得)(11b a k d -= (3)由(3)知d k |,又c k |,∴1),(|=c d k ,∴1=k . ∴11b a d -=.∴211)(d b a d b a =-=-.故成立. 例2 设n 为大于1的奇数,1k ,2k ,…,n k 为给定的整数.对于{n ,...,2,1}的排列12(,,...,)n P a a a =, 记1()ni i i s P k a ==∑,试证存在{n ,...,2,1}的两个不同的排列B 、C,使得)()(!|C s B s n -.证:假设对于任意两个不同的排列B 、C,均有!n 不整除)()(C S B s -.令X 为{n ,...,2,1}的所有排列构成的集合,则{()|s P P X ∈}为模!n 的一个完全剩余系,从而有!1(1!)!()(mod !)2n P Xi n n s P i n ∈=+≡=∑∑ (1) 又Θ1()()ni i P X P X i s P k a ∈∈==∑∑∑=∑=+ni i k n n 12)1(! (2) 而n 为大于1的奇数,所以由(1),(2)得)!(mod 02)1(!2!)!1(1n k n n n n ni i ≡+≡+∑=. 又1)!,!1(=+n n ,所以)!(mod 02!n n ≡,矛盾.故,存在B 、C X ∈,B ≠C,使得)()(!|C s B s n -. 2.2 因式(数)分解数论中许多问题直接与因式(数)分解相关联,如合数问题,整除问题等常常是要证明某种分解式的存在.数的标准分解式本身就是一种特定形式的因数分解.在不定方程的求解与一些代数式的求值中,因式(数)分解能帮助我们确定某些变量的取值范围,寻找到解题的方法.例3 求三个素数,使得它们的积为和的5倍.解:易知a ,b ,c 中必有一个为5,不妨设5c =,则有5++=b a ab ,从而有6)1)(1(=--b a .因为1-a 与1-b 均为正整数,不妨设b a <,则有⎩⎨⎧=-=-6111b a 或⎩⎨⎧=-=-3121b a ,从而知2=a ,7=b .故所求的三个素数为2,5,7.2.3 配对例4 设k 为正奇数,证明:n ++++...321整除kk k n +++...21. 分析 因为2)1(...321+=++++n n n .故需证)...21(2|)1(kk k n n n ++++,注意到当k 为奇数时,kk y x +可因式分解,因此可将)...21(2kkkn +++中的n 2个数两两配对.证 Θ)...21(2kkkn +++=kkkkkkkn n n n 2]1)1[(...])2(2[])1(1[++-++-++-+, 而当k 为奇数时,kkb a b a ++|,从而知()kk k n n +++...212| (1)又Θ()kk k n+++...212=]1[...])1(2[]1[k k k k k kn n n +++-+++,∴)...21(2|)1(kk kn n ++++ (2) 由(1)(2)知,)...21(2|)1(kkkn n n ++++,故结论成立.2.4 分组例5 (1990年高中联赛试题)设}200,...,2,1{=E ,},...,,{10021a a a G =E ⊆,且G 具有下列性质:(1)对任何1001≤<≤j i ,201≠+j i a a ;(2)100801001=∑=i ia.试证:G 中的奇数的个数是4的倍数,且G 中所有数的平方和是一定数.证:对于1001≤≤i ,令12-=i i α,i i αβ-=201.},{i i i E βα=,则G 中恰含i E 中的一个元素.设G中有k 个奇数1i α,2i α,…,k i α,有s 个偶数s j j j βββ,...,,21,这里},...,,,,...,,{2121s k j j j i i i =}100,...,2,1{.由题设知,10080=∑∑∑∑====+-=+sr j kt i sr j kt i r t rt1111)201(βββα=∑∑==-kt i kt t 112201β+⎪⎭⎫⎝⎛+∑∑==k t sr j i r t 11ββ =-k 2012∑=kt i t1β+)200...642(++++=1010022011+-∑=kt i tk β.∴2022011-=-∑=kt i tk β(1)由于t i β为偶数,所以∑=kt i t12|4β,又20|4,所以k 201|4,∴k |4,即k 是4的倍数.∑∑∑===+=sr j kt i i irta121210012βα=∑∑==+-sr j kt i rt 1212)201(ββ=∑∑==⨯-kt i kt t 1122012201β+)(1212∑∑==+sr j kt i r tββ=∑=⨯-kt i tk 122012201β+)200...642(2222++++=)2201(2011∑=-kt i tk β+6)1200)(1100(1004++⨯(2)将(1)代入(2)得62011011004)20(20110012⨯⨯⨯+-⨯=∑=i i a =1349380.2.5估值例6 令n a 表示前n 个质数之和,即21=a ,5322=+=a ,105323=++=a ,…,证明:对任意的正整数n ,区间[1,+n n a a ]中包含有一个完全平方数.分析:设质数从小到大依次为12,,...,k p p p …,要结论成立,只要存在正整数m ,使得12+≤≤n n a m a ,只要1+≤≤n n a m a ,只要11≥-+n n a a ,只要n n n a a a 211+≥-+,只要n n a p 211+≥+,只要)...(44)1(2121k n n p p p a p +++=≥-+ (1)证:直接验证易知[2,1,a a ],[32,a a ],[43,a a ],[54,a a ]中都含有1个完全平方数.当5≥n 时,我们证明:(1)式成立.为此,令2112(1)(1)4(...)n k f n p p p p ++=--+++,则n n n p p p n f n f 4)1()1()()1(221----=-++=n n n n n p p p p p 4)2)((11--+-++.当2≥n 时,n p 为奇数,故21≥-+n n p p ,1(1)()2(22)n n n f n f n p p p ++-≥+--=)2(21--+n n p p 0≥, 故当2≥n 时,数列)(n f 为递增数列.由于)(4)1()5(432125p p p p p f +++--==)7532(4)111(2+++--=32>0所以当5≥n 时,0)5()(>≥f n f .故当5≥n 时(1)式成立.例7 求出不定方程1)!1(-=-kn n (1)的全部正整数解.解 当2=n 时,易得1=k ;当2>n 时,(1)式左边为偶数,故右边也是偶数,所以n 为奇数.当3=n 时,由13!2-=k,得1=k .当5=n 时,由15!4-=k,得2=k .当5>n 且为奇数时,321-<-n n ,221≠-n ,故)!2(|212--⋅n n ,即)!2(|)1(--n n ,因此2(1)|(1)!n n --,所以)1(|)1(2--k n n .另一方面,由二项式定理知1)1)1((1-+-=-kkn n =A(2)1-n +)1(-n k . 其中A 为整数,所以)1(|)1(2--n k n ,故k n |)1(-,因此1-≥n k ,故有)!1(111->-≥--n n n n k.这说明当5>n 时,方程(1)无解,故方程(1)的解为)1,2(),(=k n ,)1,3(,)2,5(.2.6同余 例8 证明991993991993+能被1984整除.证 Θ993993993)991(-≡=9912)991()991(--=)1984(m od )991()991)(11984495(991991-≡-+⨯,∴)1984(m od 0991)991(991993991991991993≡+-≡+.∴991993991993|1984+.例9 用1,2,3,4,5,6,7组成的无重复数字的7位数,证明:这些7位数中没有一个是另一个的倍数. 证:若有两个7位数a ,b ,使得kb a = (1) 由于a ,b 均是由1,2,...,7所排成,故72≤≤k 由(1)得)9(mod kb a ≡, ∴)9(mod 11⋅≡k ,即)9(mod 1≡k ,这与92≤≤k 矛盾,故结论成立. 2.7构造例10 若一个正整数的标准分解中,每个素约数的幂次都大于1,则称它为幂数,证明:存在无穷多个互不相同的正整数,它们及它们中任意多个不同数的和都不是幂数.证:将全体素数从小到大依次记为1p ,2p ,...,n p ,….令11p a =,2212p p a =,当2≥n 时,n n n n n n p p p p p p a a 21222111...---==,下证:1a ,2a ,…,n a ,…合题意.事实上,Θn n a p |,但2n p |/n a ,所以n a 不是幂数.又对于k i i i <<<≤Λ211,)1(112121i i i i i i i i a a a a a a a a k k +++=+++ΛΛ=)1(11i i Ap a +=)1(111212221i i i Ap p p p p +-Λ, 其中A 为正整数.因为1)1,(11=+i i Ap p ,所以1i p 在)(21k i i i a a a +++Λ的标准分解中的幂次为1,因而不是幂数.例11 设}2011,,3,2,1{Λ中质数的个数为a ,n 为正整数且a n ≤<1,求证必有2011个连续正整数, 其中恰有n 个质数.证:令}2010,,2,1,{+++=k k k k A k Λ,并令)(k f 为k A 中质数的个数,则易知a f =)1(,0)2!2012(=+f . 对于)1!2012(,,2,1+=Λk ,显然有1|)()1(|≤-+k f k f ,所以对于a n ≤<0,必存在一个0k ,使得n k f =)(0,从而0k A 中的2011个连续整数满足要求.2.8 数学归纳法例12 设n 是正整数,求证:124323|51222-+-n n n.证:令22()332241nf n n n =-+-.因为0)1(=f ,所以)1(|512f ,假设)(|512n f ,那么对于1+n ,因为)183(8)()1(2--=-+n n f n f n,所以要证)1(|512+n f ,只需证)183(8|5122--n n ,即只需证明)183(|642--n n .为此,令183)(2--=n n g n .显然有0)1(|64=g ,假设)(|64n g ,由于)199(64)19(8)()1(21+++=-=-+--Λn n nn g n g ,因此)1(|64+n g ,由归纳法原理知对一切n ,有183|642--n n,从而有)1(|512+n f ,再由归纳法原理知,对于正整数n ,有)(|512n f .2.9 反证法例13 试证方程042333=--z y x (1)无正整数解.分析:若(z y x ,,)为(1)的一组解,则x 为偶数,令12x x =,则0243331=--z y x ,从而知y 为偶数,再令12y y =,代入得04233131=--z y x ,故z 为偶数,再令12z z =,代入得042313131=--z y x ,因此),,(111z y x 也是方程(1)的解.这样由方程(1)的一组正整数解),,(z y x 必可得到另一组正整数解),,(111z y x ,且x x <1.因此,若开始取得的正整数解使得x 达到最小,则这种下降不可能进行.证:反证法. 若方程(1)存在正整数解,设),,(000z y x 是使得x 达到最小的正整数解,那么依分析的过程知必可得到方程(1)的一组正整数解),,(111z y x ,且01x x <,这与0x 达到最小相矛盾,这个矛盾表明方程(1)无正整数解. 习题1.设1≥≥n m ,m ,n 为整数,证明nm C mn m ),(是整数. 2.设a ,b 为整数,证明:))1(()2)((|)!(1b n a b a b a a bn n -+++-Λ.3.设n 是大于3的奇数,证明可将集合}1,,3,2,1{-n Λ的元素分成两组,每组21-n 个元素,使得两组数的和模n 同余.。