当前位置:文档之家› 尺规作图法简介

尺规作图法简介

一、尺规作图在中学就知道,几何作图所使用的工具是严格限制的,只准用圆规和直尺,直尺不能有刻度,不能使用量角器及其他任何工具.其实,这种限制自古希腊就有而且沿用至今.为什么要加以这样的限制呢?比如说,要找出一个线段的中点来,就不可以先用(有刻度的)尺去量,看它的长度是多少,然后取这个长的一半,再用这一半去量就找出中点来了.何必一定要用无刻度的直尺和圆规去寻求呢?是自己跟自己过不去吗?古希腊认为,所有的几何图形是由直线段和圆弧构成的,圆是最完美的,他们确信仅靠直尺和圆规就可绘出图形来.古希腊人十分讲究理性思维,讲究精确、严谨.他们认为依据从少数假定出发的、经由逻辑把握的东西最可靠.例如前面所说的寻求一已知线段AB 的中点问题,作图的步骤是:1.以 A 为圆心,以一适当长度为半径画弧;2.又以 B 为圆心,以同样的长度为半径画弧;3.这两弧相交于两点,作两点连线,此连线与已知直线之交点即为所求之中点.然后,要根据已知几何命题来证明这个点必是中点.人们认为,这不仅是最可靠地找到了中点,而且体现了一种完美的思路和做法.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17 世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如F i = 22i+ 1的数.费马的一个著名猜想是,当n》3寸,不定方程x n+ y n= z n没有正整数解•现在他又猜测F i都是素数,对于i = 0, 1, 2, 3, 4时,容易算出来相应的F i:F o= 3, F! = 5, F2 = 17,F3=257,F4=65 53725验证一下,这五个数的确是素数. F5=225+1 是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5= 641X6 700 417 .当然,这一事例多少也说明: 判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6, F7也不是素数,F8, F9, F10 , F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道•至今,人们还只知F o , F1, F2, F3 , F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1 的素数只有有限个.但对此也未能加以证明.当然,形如F i=22i+1 的素数被称为费马素数.由于素数分解的艰难,不仅对形如F i=22i+1的数的一般结论很难做出,而且具体分解某个F i 也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20 岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k或2k>p1 xp2X^xp其中,P1 , P2,…,P s是费马素数.正7 边形可否尺规作图呢?否!因为7 是素数,但不是费马素数.倒是正17 边形可尺规作图,高斯最初的一项成就就是作出了正17 边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257 边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17 边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17 等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17 边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为 3 和 5 都是费马素数(3=F o, 5 = F i);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13 都不是费马素数;对于正257 边形、正65 537 边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4= 22,因为6= 2 "3 而3=F0 •从古希腊流传下来的几何作图还有三大难题,一个是化圆为方问题,即求作一正方形,使其面积等于已知圆的面积;二是倍立方体问题,即求作一立方体,使其体积等于已知立方体的体积;三是将一任意角三等分.某些特殊角的三等分并不困难,例如将90°的角、 1 35 °的角三等分并不难,但是任意角就不一样了.例如,60°的角,你试试看,能否将它三等分?现在已有了结论,告诉你不要再试了,否则是白费时间了.可以取单位圆作代表,其面积即为n那么,化圆为方的问题相当能吗?古希腊人对化圆为方的问题有极大兴趣,许多人进行研究.这一研究推动了圆面积的近似计算,促进了极限思想的萌生,但是并没有解决化圆为方的问题.另外两大难题虽也没解决,但也促进了对另一些数学问题的研究.尺规作图的实质在于限制只使用两种工具的条件下通过有限步骤完成作图.长度为任一有理数平方根的线段来.当然还可通过有限步骤作出长度为一有理数平方根的平方根的线段来.我们把凡能用尺规经有限次步骤作出的线段或量叫做“可作几何量”.可以证明,“可作几何量”就是那些有理数经有限次+、-、X羽和开方这类运算得到的量•否则叫不可作几何卓”量•化圆为方的问题直至19世纪才得到答案:它是不可能的•因为可作几何量".这一悬而未决、延宕两千多年的古老问题,最终得以解决.属“不可作几何量”,所以,倍立方体问题的答案也明确了:不可能!再以60。

角为例来分析任意角的三等分问题. 为把60。

三等分,必然要用尺规作出量cos 20或sin 20 °以下三角恒等式是我们熟知的:cos 3x= 4cos3x-3cos x,将x= 20°代入,得将cos 20换写为y,即是三次代数方程:这个三次方程的一个正实根当为其所需之解,然而,它必会有有理数的立方根表示. 因而y= cos 20也是一个不可作几何量”.故三等分问题亦属不可能.难怪古希腊人对这三个问题久久未找到答案,难怪这是真正的难题.不是古希腊人不智,确实是当时的数学水平还难以使他们得出三大几何作图难题均以“不可能”为结局的结论来.二、解析几何与微积分数学以两千多年的历史伴随人类文明.从公元前到公元16 世纪,几何与代数各自平行发展着,几何则以更大的魅力影响着人类文明.但几何似乎仅是关于形的科学而与数无关;代数则似乎与形无关而仅是关于数的科学.代数与几何难以被联系起来的原因是,人们心目中的数是一个个孤立的定数,因而难以从数想到由无穷多个点连成的线条等图形;而对于形,例如,线段和封闭图形,它们与数的联系似乎仅有由数刻画的长度和面积,因而难以从图形想到数的其他表现能力.把数与形密切联系起来的关键是变量概念的形成;另一个同等重要的问题是把图形如线条视为是由动点形成的.只有变动的数与变动的点联系起来,才使数与形的密切关系被深刻地揭示出来了.这里,决定性的工具是坐标,有了坐标,数就是点,点就是数,变动的点就是变动的数,变动的数就是变动的点,于是变数与图形结合在一块了.真正的困难还在于,任何一个具体的图形都不带有一个坐标在身上,亦即,人们在现实生活中是不能直接看到坐标的.当然,稍稍想一想,生活中也有根本感受不到的坐标存在着.例如,在我们说东、南、西、北的时候,一般是确定的站在某一点来说,比如说“北京在东面”,这对站在兰州的人来讲是对的,对站在济南的人来讲是不对的.同样,站在郑州应当说“武汉在南面”,而站在广州,则只能说“武汉在北面”.这实际上就是有了坐标原点的概念,有了坐标的思想.可是,问题还没有那样简单,还需要有运动的观念,还需要有更精确的描述,才能借以刻画几何图形,才能实现数与形的有效融合.数与形的充分结合才产生解析几何.解析几何的主要创始人笛卡儿的有关工作也经历了一个发展过程,所以解析几何并不是瞬间的、偶然出现的产物.让我们看一个实例.首先,我们回顾一下已知两线段而由尺规作出比例中项的办法,如果两线段一样长,那它们本身就是比例中项.如果不一样,那么,可在较长的线段AC 上取一点B,使AB等于较短线段的长•再以AC为直径画圆,然后过B作AC的垂线交圆于 D , 连接AD ,AD 即为所求之比例中项.在右图中,我们按以上方式作出了AB 与AC 的比例中项,即接着,我们容易作出E、F、G、H、…使得如果设AB = 1, AD = x,上式就变成了从线段看,AD=x时AF=x3, AF = AD + DF,若记DF=a,我们得到3x =x+a•反过来看,a作为已知数,容易作出一长度为a的线段DF,根据由以上分析所得之启示可作出AD,那么,AD实际上便是三次方程式x3=x + a的根.这就是笛卡儿在正式形成其明确的解析几何思想之前的一例,把代数方程与几何结合起来的一例.他还曾利用几何方法探寻四次代数方程求根的方法. 这是把几何与代数问题结合的一个方面.另一方面,笛卡儿对几何问题又运用了代数方法,例如,研究几何轨迹的问题.解析几何的精华在于把几何曲线用代数方程来表达,同时又利用代数的研究方法来研究几何.从进一步的分析还可发现,这种方法其所以十分强有力,是因为形与数的联系比人们想象的要紧密得多,许多复杂的几何现象是通过解析的方法发现的,许多复杂的几何问题是通过解析方法解决的. 这不仅是一个手段问题,也是对世界本质的看法问题. 所以,笛卡儿的解析几何具有深远的意义.我们从所熟知的内容来看看解析几何的意义•例如,我们知道椭圆、双曲线、抛物线的标准方程是:2y = 2px我们并不需要画出图形来而只要一看式子就知道它是个什么样子.所谓标准方程,是从代数表达形式来看的,而从几何上看,则是其图形摆得方方正正,例如,标准椭圆方程实际上是其圆心摆在原点,其长短半轴分别与平面的两条坐标轴重合.但是,实际的情况并不总是以标准的形式呈现在我们面前的.直线也有其标准形式,但一般形式是ax+ by+ c= 0;二次曲线的一般方程式是ax2+ 2bxy + cy2+ dx + ey+ f = 0.然后,我们可以通过解析的方法、代数的方法把它们化为标准形式,例如,对二次方程,我们可以通过以下的变换来做这件事情:通过这样的变换,就可以把一般方程化为标准方程.这一过程,这种工作,从表面看来似与几何毫无关系,我们只是在做着代数的工作.通过上面的变换,原来的方程就变为一个新的形式了,现在把它们并列写下来:ax2+ 2bxy + cy2+ dx+ey + f = 0a z 2+2b,x,y ,2+dC,xy" +e,y,+f z=0这成了两个不同的式子,却有 3 个相等的式子:a+c=a +,c换句话说,在前述变换之下,有两个东西不变(对此,我们前面曾提到过). 至此,我们对一般二次代数方程所作的叙述全是代数的,对方程进行代数变换(两种线性变换),以及这种变换之下的不变量.接下去我们还可以说明,一般二次方程能在变换之下化为标准方程.下面将用全套的几何语言来叙述与以上相关的全套代数涵义,或说明全套代数语言的几何涵义:在给出了一般二次曲线之后,我们总可以通过平移和旋转,把它摆在标准位置上.以椭圆为例,即把它的圆心移到原点来,把它的长短轴移至坐标轴上来,而二次曲线的原形是不变的.可见,用几何的语言来说,也是很简单的.那么,代数的讨论有什么实际的意义呢?在一般地给出了一个二次代数方程后,你很难看出它会是怎样一条曲线,如果一点一点地描绘也不是件简单的事. 然而,代数的讨论告诉我们有几个不变式在那里,我们甚至不必最终化成标准表达式,就能由几个不变式看出曲线的类型和性质.这是重要的定性分析.此外,这种分析也使我们能把所有的二次曲线准确无误地详尽无遗地予以归类了.从哲学上说,笛卡儿的解析几何可说是他理性主义的产物. 上面以二次曲线为例,表明代数方法与几何问题的结合,产生了最充分的理论说明. 笛卡儿们认为世界是十分有秩序有条理的,是可以用方程来表达的.奇异就出在这种有序的世界和有序的运动里面.在解析几何出现后不久,微积分被发现了. 微积分与解析几何不仅是伟大的数学发现,而且为近代科学开辟了道路;它们不仅是17 世纪的伟大发现,而且在人类文明史上写下了极其灿烂的一页;它们不仅为近代科学开辟了道路,而且它们本身就是划时代的成果.在微积分产生之前,人们已比较普遍地接触这样几类问题:物理方面,求速度、求距离的问题;几何方面,求切线、求长度、求面积、求体积、求物体重心的问题;在各种实际问题中,求极大、极小的问题等.因此,在微积分正式诞生之前,关于极限的思想,关于微分的思想,关于积分的思想,已经零星可见.关于极限的思想在我国古代早已出现.求速度,求切线,这就会接近微分;求距离,求长度和面积、体积,这就会接近积分.古代中国的祖暅原理与近代西方的卡瓦列里原理说的是同一原理,前者先于后者约1100 年左右.这一原理当为一般大学生所熟悉:当两立体介入两平行平面之间,又为平行于这两平面的任何一平行平面所截得之截面面积相等时,那么两立体之体积相等.用符号来表达,用同一平面截得两立体之截面面积分别表示为f(x)dx 和g(x)dx ,原理说的是:当对于所有的x 有f(x)dx=g(x)dx 时,便有:作为一个著名例子,我们看看半球体积的计算.这一计算,现在看来似乎是轻而易举的,但在没有微积分之前是十分困难的.所以下面的计算方式在当时是很有意义的,它利用了祖暅——卡瓦列里原理.设半球的半径为r.以半球的大圆为底面,球顶朝上•作一平面与底面平行并与底面之距离为h.这个平面截半球所得之截面为一圆,该n (r- h2).再看看一个截面半径为r的圆柱,其高度也为r .其下底与上面所说的半球底面摆在一个平面. 现在将以此圆柱的上底为底、以下底圆的圆心为顶点作一圆锥. 这一圆锥完全含于圆柱,现在把这一圆锥挖去,并考虑被挖去一圆锥的圆柱所形成的立体. 当用一平行于底面的平面去截它时,其截面为一圆环,设这一平行于底面的平面距底面h,那么,这一圆环的面积也等于2 2 2 2nr—nh= n (― h ).可见, 这一立体与半球被任何同一平行平面所截之截面面积相等. 根据祖暅原理, 半球体积应与被挖去一圆锥的圆柱体积相等.而被挖去一圆锥的圆柱体积是:尽管在牛顿和莱布尼茨之前, 人们从不同的角度接触到了微分和积分, 但是对于微分与积分的关系并没有真正弄清楚.而真正的困难亦在此.很容易明白, 加法与减法是互逆的运算,也不难明白, 乘法与除法是互逆的运算.开方作为乘方的逆运算, 在技术上更困难了;作为指数运算逆运算的对数运算的产生并不容易. 逆运算常常带来一些新问题,程序性问题,多值性问题.对于微分与积分之间的联系, 认识上更有特殊的困难, 这样两个似乎十分不同的两种运算竟然是互逆的, 这正是使人惊讶不已的地方, 也是使人感到其发现之特别不易的地方. 以具体问题来说, 求一曲线所围成图形的面积运算怎么会与求这一曲线的切线的运算是互逆的运算呢?微积分的创立正是以发现微分与积分的互逆关系为标志的. 如今我们所说的牛顿—莱布尼茨定理即微积分基本定理,讲的就是两者关系.微积分基本定理可主要以微分的形式出现, 亦可主要以积分的形式出现.我们分别叙述如下:微分形式.(X)在[a, b]上可微,且积分形式.可微,且发现f(X) 的积分的微分正是它自己(在一定条件下即可保证).只有在这一发现得到之后,才能说微积分产生了,因为这一定理奠定了微积分的理论基础.牛顿的发现在莱布尼茨之前, 但发表的时间在莱布尼茨之后, 他们两人又确系各自独立的发现,而且背景也有所不同. 因此,虽然后来也曾出现过关于发现的优先权的争议, 最终的看法却达成一致:牛顿和莱布尼茨共同创立了微积分的基本定理.微积分的伟大意义可以从 4 个方面去看.1.对数学自身的作用.自从有了解析几何和微积分,就开辟了变量数学的时代,因而数学开始描述变化,描述运动.微积分改变了整个数学世界的面貌.牛顿、莱布尼茨17 世纪创立的微积分还存在着明显的逻辑缺陷,但是这种缺陷并未抑制它旺盛的生命力.18 世纪的数学家们在微积分提供的思维和工具的基础上阔步前进,迅速创立了许多数学分支,诸如微分方程,无穷级数,变分法等.在进入19 世纪之后,还有诸多与微积分直接相关的数学分支产生,原有的一些数学分支也开始利用微积分的方法,前者包括复变函数,微分几何等,后者包括数论,概率论等.可以说,在有了微积分之后的两、三百年期间,数学获得了极大的发展,获得了空前的繁荣.微积分的严密逻辑基础也在19 世纪完善地建立起来.微积分基本定理的表现形式在多维空间和一般拓扑空间中也获得了拓广,在更广阔的领域中延伸,进一步显示了它在数学领域里的普遍意义.2.对其他自然科学和工程技术的作用.有了微积分,整个力学、物理学都得以它为工具来加以改造,微积分成了物理学的基本语言,而且,许多物理学问题要依靠微积分来寻求解答.“数理不分家”,这句话在有了微积分之后就具有了真实的意义,离开了微积分不可能有现代物理,无论是力学、电学还是光学、热学.微积分的创立得到了天文学的启示,此后,天文学再也离不开微积分.19 世纪上半叶可能还认为化学只需要简单的代数知识,而生物学基本上与数学没有联系.现在,化学、生物学、地理学等都必须深入地同微积分打交道.3.对人类物质文明的影响工程技术是最直接影响人类物质生活的,然而工程技术的基础即数理科学,也可以说,现代工程技术少不了微积分的支撑.从机械到材料力学,从大坝到电站的建设,都要利用微积分的思想和方法.如果说在落后的生产方式之下,只需要少量的几何、三角知识就可以工作的话,如今,任何一个未学过微积分的人都不可能从事科学技术工作.在有了微积分和万有引力原理之后,人们就预见了人造卫星及宇宙飞行的可能,并且早已利用微积分计算出了宇宙速度.今日满天飞行的人造卫星早在微积分产生之初就已在学者们的预料之中.在今天人类广泛的经济活动、金融活动中,微积分也成了必不可少的工具.微积分诞生之初的主要背景是物理学和几何学,而今,它几乎为一切领域所运用.它对人类物质生活的影响是越来越大.4.对人类文化的影响只要研究变化规律就要用上微积分,在人文、社会科学领域亦如此,因而微积分也渗透于人文、社会科学,用它来描述和研究规律性的东西.哲学尤其关注微积分,那是因为微积分给了哲学许多的启示,它不仅影响到哲学方法,也影响到世界观.辩证唯物主义更关注微积分.马克思十分关心数学,何止是关心,他对数学还曾有过广泛而深入的研究,特别对微积分有专门的研究.马克思在1863 年7 月 6 日致恩格斯的信中说:“有空时我研究微积分.顺便说说,我有许多关于这方面的书籍,如果您愿意研究,我准备寄给您一本.”① 1865年 5 月20 日,马克思又在给恩格斯的一封信中说到:“在工作之余——西,任何其他读物总是把我赶回写字台来. ”②马克思不只研究牛顿、莱布尼茨,而且研究了牛顿、莱布尼茨之后一个多世纪内的一批著名数学家,如达朗贝尔,欧拉,拉格朗日等人.1882 年11 月22 日,马克思在致恩格斯的一封信中还说到:“我未尝不可用同样的态度去对待所谓微分方法的全部发展——这种方法始于牛顿和莱布尼茨的神秘方法,继之以达朗贝尔和欧拉的唯理论的方法,终于拉格朗日的严格的代数方法(但始终是从牛顿—莱布尼茨的原始的基本原理出发的),——我未尝不可以用这样的话去对待分析的这一整个发展过程,说它在利用几何方法于微分学方面,也就是使之几何形象化方面,实际上并未引起任何实质性的改变.”③马克思那个时代写到了“终于拉格朗日”表明马克思已站在前沿,他可能还未看到柯西、魏尔斯特拉斯的分析方法、极限方法,但也是从“牛顿—莱布尼茨”那里出发的.从1863 年的信到1882 年的信,从信中表现出来的对微积分越来越深入的分析,可以看出,马克思是多么认真、多么深入又在多么漫长的时间里关注和研究着微积分!我们可以想一想,马克思作为一位哲学家、思想家、经济学家、政治家为何如此深切地关心和深入地研究数学尤其是微积分?再看看恩格斯本人.恩格斯在《自然辩证法》中有一段许多人熟悉的话:“数学中的转折点是笛卡。

相关主题