当前位置:文档之家› 高次方程及解法

高次方程及解法

高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。

由两个或两个以上高次方程组成的方程组,叫做高次方程组。

对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。

对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。

一、±1判根法在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。

求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。

“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。

例1解方程x4+2x3-9x2-2x+8=0解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1),(x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。

二、常数项约数求根法根据定理:“如果整系数多项式a n x n +a n-1x n-1+ +a 1x+a 0可分解出因式P x-Q ,即方程a n x n +a n-1x n-1+ +a 1x+a 0=0有有理数根PQ(P、Q 是互质整数),那么,P一定是首项系数a n 的约数,Q 一定是常数项 a 0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。

“常数项约数求根法”分为两种类型:第一种类型:首项系数为1。

对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程值为零的约数,就是方程的根。

依次用原方程除以带根的因式,逐次降次,直至将高次方程降为二次或一次方程求解。

例1 解方程x 4+2x 3-4x 2-5x-6=0解:第一步:首先列出“常数项”-6的所有约数±1、±2、±3、±6第二步:将这些约数逐一代入原方程验算,确定原方程中所含的“带根”因式。

根据各项系数和不为零和奇数项系数和不等于偶数项系数和,排除±1根, f(2)=16+16-16-10-6=0 f(-3)=81-54-36+15-6=0,所以原方程中含有因式(x-2)(x+3)第三步:用长除法将原方程降次。

(x 4+2x 3-4x 2-5x-6)÷(x-2) (x+3)= x 2+x+1第四步:解一元二次方程x 2+x+1=0 x=a ac b b 242-±-=2312114112i ±-=⨯⨯-±- ∴x 1=,231i +- x 2=,231i -- x 3=2 x 4= -3 第二种类型,首项系数不为1 。

对首项系数不为1的高次方程,首先以首项系数为“公因数”提取到小括号外,然后对小括号内的方程的常数项列出公约数。

特别注意此时代入方程验算的值一定是PQ 而不是Q,因为此时原方程的因式是(Px -Q),其余的解法步骤同首项系数为1的解法步骤相同。

例2 解方程3x 3-2x 2+9x -6=0解:将原方程化为 3(x 3-32x 2+3x -2)=0 此时,“常数项”为-2,它的约数为 ±1,2± ,根据“±1判根法”排除±1,这时,代人原方程验算的只能是P Q =32,或PQ = -32 f (32)=3⨯=⎥⎥⎦⎤⎢⎢⎣⎡-⨯+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛3232332323223⎪⎭⎫ ⎝⎛-+-22278278=3⨯0=0 所以原方程中有因式(3 X -2)。

(3x 3-2x 2+9x -6)÷(3x -2)= x 2+3解方程式x 2+3=0 x=23i ±, x 1=23i ,x 2=-23i ∴原方程的解为x 1=23i ,x 2= 23i -,x 3=32 三、倒数方程求根法1、定义:系数成首尾等距离的对称形式的方程,叫做倒数方程。

如a x 4+bx 3+cx 2+dx+e=0,其中,,e a =d b =或者a= -e,b= -d2、性质:倒数方程有三条重要性质:(1)倒数方程没有零根;(2)如果a 是方程的根,则a1也是方程的根;(3)奇数次倒数方程必有一个根是-1或者1,分解出因式(x+1) 或(x-1) 后降低一个次数后的方程仍是倒数方程。

3、倒数方程求解方法:如果a x 4+bx 3+cx 2+dx+e=0是倒数方程,由于倒数方程没有零根,即x ≠0,所以,方程两边同除以x 2得:a(x 2+21x )+b(x+x 1)+e=0,令x+x 1=y, x 2+21x =y 2-2,即原方程变为: ay 2+by+(e-2a)=0, 解得y 值,再由x+x 1=y ,解得x 的值。

例1 解方程2 x 4+3x 3-16x 2+3x+2=0解: x 2 ≠ 0 ∴ 方程两边同除以 x 2 得:2x 2+3x-16+x 3+22x =0,即2(x 2+21x)+3(x+x 1)-16=0, 2[(x+x1)2-2]+3(x+x 1)-16=0, 令x+x 1=y, 代入方程整理得:2y 2+3y-20=0, 解之得:y 1= -4, y 2=25 即x+x 1= -4, x 2+1= -4x, x 2+4x+1=0, x=a ac b b 242-±-=2114442⨯⨯-±-=2124±-=2324±-=-2±3, x 1= -2+3, x 2= -2 -3又 x+x 1=25 2x 2+2=5x, 2x 2-5x+2=0(2x-1)(x-2)=0 ∴x 3=21, x 4=2 经检验知x 1= -2+3, x 2= -2-3,x 3=21, x 4=2都是原方程的根。

例2 解方程6x 5 - 4 x 4 -3x 3+3x 2 -4x -6=0解:观察该方程首尾等距离对应项系数互为相反数,且最高次幂项数是奇数,有根x=1,方程两边同除以因式(x-1)得:6x 4+10x 3+7x 2+10x+6=0, 方程两边同除以x 2并整理得:6⎪⎭⎫ ⎝⎛+221x x +10071=+⎪⎭⎫ ⎝⎛+x x , 令y=x x +1得051062=-+y y ,65551+-=y =2y 6555-- 方程x+65551+-=x 无实数解:65551--=+x x 得:x ()126455105553,2-±+-= 经检验知:12645510555,121⎪⎭⎫ ⎝⎛-±+-==x x 是原方程的实数根。

点评讲析:例1、例2这些倒数方程的特征是首尾等距离对应项系数相等,用一般表达式表述为ax 4+bx 3+cx 2+dx+e=0,其中a=e,b=d,或者a= -e,b= -d 对首尾对应项系数相等的方程,我们一眼就能发现是“倒数方程”,两边同除以x 2,化成可用“换元法”替解的一元二次方程求解。

但有些方程,首尾等距离对应项系数不相等,但这些系数又有这样的规律:如ax 4+bx 3+cx 2+k 02=•+•a k bx (a 0≠)即常数项可以分解成同四次项系数相同的数字“a ”和另一个因数“k 2”的乘积,一次项系数可分解出同三次项系数相同的数字b 和与常数项2k 相同的数字k 的乘积,凡是具有这样规律特征的方程,也可以用“倒数方程求根法”来解答。

例3:x 4+5x 3+2x 2+20x+16=0解:a k e •=⨯==221416 , d=20=4b k •=⨯5属于倒数方程的“特例形式”,可用“倒数方程求根法”求解。

原方程两边同除以x 2 得: x 2+5x+2+016202=+x x , 02451622=+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y=x+x 4,则81622-=+y x x 即:y 2+5y-6=0 y= -6或1,当y= -6时,x+53,64±-=-=x x当 y=1时,x+14=x (无实数根) ∴531+-=x , 532--=x四、双二次方程及推广形式求根法双二次方程有四种形式:第一种是标准式,如:ax 4+bx 2+c=0 ,此时设y=x 2 原方程化为含y 的一元二次方程ay 2+by+c=0,求出y 值在代入x 2之值,从而求出x 之值。

第二种形式双二次方程的推广形式。

如:(ax 2+bx+c )2+m(ax 2+bx+c)+d=0 ,此时设y=(ax 2+bx+c),也可转化为含y 的一元二次方程y 2+my+d=0,解出y 值代入ax 2+bx+c=y从而求出原方程的根x 之值。

第三种形式是(x+a)(x+b)(x+c)(x+d)+m=0,此时,方程左边按照“创造相同的多项式,换元替换”的要求,将(x+a )(x+c); (x+b)(x+d)结合(一般是最小数与最大数,中间数与中间数组合),展开相乘,创造相同的多项式(ax 2+bx+c )或成比例的多项式m(ax 2+bx+c),然后设y=ax 2+bx+c,将原方程转化为含y 的一元二次方程y 2+my+e=0,求出y 值,将y 值代入ax 2+bx+c=y 求x 之值。

第四种形式是(x-a )4+(x-b) 4=c 的形式,此时,将“-a ”换成“+b ”或将“-b ”换成“+a ”,利用y=x+()()2b a -+-,消去x 的三次项和一次项,变成双二次方程42⎪⎭⎫ ⎝⎛++b a y +42⎪⎭⎫ ⎝⎛--b a y 的形式求解。

例1 解方程x 4+3x 2-10=0解:本例属于双二次方程标准式ax 4+bx 2+c=0的形式,直接设y=x 2,则原方程化为:y 2+3y-10=0 (y+5)(y+2)=0 y= -5或者y=2 52-=∴x (舍去),x 2=2,x 1=2,22-=x例2 解方程(x 2-3x+2)2=9x-3x 2-2解:本例属于双二次标准方程ax 4+bx 2+c=0推广形式的第二种类型(ax 2+bx+c )2+m(ax 2+bx+c)+d=0,因为括号内的二次三项式和括号外的二次三项式经过整理,对应项系数成比例,即:(x 2-3x+2)2+3(x 2-3x+2)-4=0设y=x 2-3x+2,则原方程转化为y 2 +3y -4=0 4-=y ,或者 y=1 x 2-3x+2=-4 ,x 2-3x+6=0 0<∆ 无实数根, x 2-3x+2=1,x 2-3x+1=0 x=253± ∴原方程的根x 1=,253+ x 2=253- 例3 解方程(x+2)(x+3)(x+8)(x+12)=4x 2解:本例题属于双二次标准方程ax 4+bx 2+c=0推广形式的第三种类型(x+a )(x+b)(x+c)(x+d)+m=0,这种方程解答的核心要领是“创造可供设y 换元的相同多项式”。

相关主题