当前位置:文档之家› 第10章电解与极化作用

第10章电解与极化作用

从氢气在几种电极上的超电势,在石墨和汞 等材料上,超电势很大,而在金属Pt,特别是镀 了铂黑的铂电极上,超电势很小。
所以标准氢电极中的铂电极要镀上铂黑。
影响超电势的因素很多,如电极材料、电极表面 状态、电流密度、温度、电解质的性质、浓度及溶液 中的杂质等。
氢在几种电极上的超电势
1、当发生极化作用时,两电极的电极电势的变化为( )
压力,呈气泡逸出,反电动
流 I
势达极大值 Eb,max。
3
再增加电压,使I 迅速增加。
将直线外延至I = 0 处,得
2
E(分解)值,这是使电解池 不断工作所必需外加的最
1 E分解 电压E
小电压,称为分解电压。 测定分解电压时的电流-电压曲线
3. 实际分解电压
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电位降 IR。这三者的加和就称为实 际分解电压。
E(分解) E(可逆) E(不可逆) IR
E(不可逆) (阳) (阴)
显然分解电压的数值会随着通入电流强度的增加而增加。
请思考以下问题:
1、什么是超电势?电极的极化主要有哪几种?
2、什么是浓差极化?浓差极化的结果是什么(即 阴、阳极可逆电极电势与不可逆电极电势的关系是 什么)?
3、如何计算电解池阴阳极的析出电极电势(即不 可逆电极电势)?如何计算分解电压?
(a)大于-0.06V (b)等于 -0.06V
(c) 小于-0.06V (d)无法判定
§10.3 电解时电极上的竞争反应
1. 金属的析出与氢的超电势 2. 金属离子的分离
1. 阴极上的反应 ห้องสมุดไป่ตู้解时阴极上发生还原反应。 发生还原的物质通常有(1)金属离子,(2)氢离子
(中性水溶液中 aH+ 107 )。 判断在阴极上首先析出何种物质,应把可能发
可逆
=
y Cu2+|Cu
-(RT/2F)
ln
[1/(ms(Cu2+)]
即 可逆,阳< 不可逆,阳 ;可逆,阴 > 不可逆,阴
结论:当电流通过电极时,因离子扩散的迟缓性而
导致电极表面附近离子浓度与本体溶液中不同,从
而使电极电势偏离平衡电极电势的现象,称作“浓
差极化”。
用搅拌和升温的方法可以减少浓差极化
(a)阳变大,阴变小 (b)阳变小,阴变大
(c)两者都变大
(d )两者都变小
2、极谱分析仪所用的测量阴极为( )
(a)电化学极化电极 (b)浓差极化电极
(c)理想可逆电极
(d)难极化电极
3、298K时,在0.10 mol·kg-1的HCl溶液中,氢电极 的可逆电势约为-0.06V,当用Cu电极电解此溶液, 氢在Cu电极上的析出电势应( )
4、用铜电极电解CuCl2的水溶液,不考虑超电势,在阳 极上将会发生的反应为( )
(已知Cu2 Cu
0.337V,
O2
H2O
1.23V, Cl2
Cl
1.360V )
(a) 析出氧气 (b) 析出氯气 (c) 析出铜 (d) 铜电极氧化
5、通电于含有相同浓度的Fe2+,Ca2+,Zn2+,和Cu2+ 的电解质溶液,设H2因有超电势而不析出,则这些金 属在阴极上的析出次序为( )
阳极产品:铝合金的氧化和着色、制备氧气、 双氧水、氯气以及有机物的氧化产物等。
常见的电解制备有氯碱工业、由丙烯腈制乙二 腈、用硝基苯制苯胺等。
§10.4 金属的电化学腐蚀、防腐与金属的钝化
金属腐蚀分两类: (1)化学腐蚀 金属表面与介质如气体或非电 解质液体等因发生化学作用而引起的腐蚀,称为化 学腐蚀。化学腐蚀作用进行时无电流产生。
第十章 电解与极化
第十章 电解与极化作用
§10.1 分解电压 §10.2 极化作用 §10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源
§10.1 理论分解电压
1. 理论分解电压定义
使某电解质溶液能连续不断发生电解时所必须外加 的最小电压,在数值上等于该电解池作为可逆电池 时的可逆电动势
腐蚀时阴极上的反应
(1)析氢腐蚀 酸性介质中 H+在阴极上还原成氢气析出。
H+
e
1 2
H2
(g)
设 aH2 1, aH+ 107
(H+|H2 )
RT F
ln
aH2 aH+
(H+|H2 ) 0.413 V
为了使分离效果较好,后一种离子反应时,前 一种离子的活度应减少到 107 以下,这样要求两种 离子的析出电势相差一定的数值。

RT zF
ln 107
当 z1 z2 z3
阴 0.41V 阴 0.21V 阴 0.14V
当两种金属析出电势相同或接近时,同时析出为合金
如: y (Pb2+/ Pb) = -0.126V; y (Sn 2+/Sn) = -0.136V
2. 电极极化原因
2.1 浓差极化 电流通过电极时,若电化学反应速率较快,而离子的 扩散速率较慢,则电极表面附近和本体溶液中该离子 的浓度不同。如:
阴极: Cu2++2e-Cu 阳极: Cu Cu2+ +2e-
Cu
Cu2+
Cu
Cu2+
cs< cb
cs> cb
而电极电势只与其表面附近的离子浓度有关
电 流
I
随着E的增大,电极表面
3
产生少量氢气和氯气,但压
力低于大气压,无法逸出。
2
所产生的氢气和氯构成了
1
原电池,外加电压必须克服这
E分解 电压E
反电动势,继续增加电压,I 测定分解电压时的电流-电压曲线 有少许增加,如图中1-2段
2. 分解电压的测定
当外压增至2-3段,氢气
和氯气的压力等于大气 电
3、已知
Fe2 Fe
0.440V
,
Cd2
Cd
0.402V
将Fe(s)和Cd(s)的粉末投入含Fe2+(0.10 mol·kg-1)和含Cd2+ (0.001 mol·kg-1)的溶液中, Fe(s)和Cd(s)粉将( )
(a)都溶解 (b) Fe(s)不溶, Cd(s)溶解
(c) 都不溶解 (d) Fe(s)溶解, Cd(s)不溶
4、由于极化作用的存在,原电池和电解池的电动 势和实际分解电压随电流密度如何变化?
§10.2 极化作用
1. 极化(polarization) 当电极上无电流通过时,电极处于平衡状态,这时 的电极电势分别称为阳极可逆(平衡)电势和阴极可 逆(平衡)电势
可逆(阳),可逆(阴)
在有电流通过时,随着电极上电流密度的增加, 电极实际分解电势值对平衡值的偏离也愈来愈大, 这种对可逆平衡电势的偏离称为电极的极化。
铁在酸性介质中只能氧化成二价铁:
Fe(s) Fe2+ 2e
二价铁被空气中的氧气氧化成三价铁,三价铁在水 溶液中生成 Fe(OH)3 沉淀, Fe(OH)3 又可能部分失水 生成 Fe2O3
所以铁锈是一个由 Fe2+ , Fe3+ , Fe(OH)3, Fe2O3 等 化合物组成的疏松的混杂物质。
(2)电化学腐蚀 金属表面与介质如潮湿空气或 电解质溶液等,因形成微电池,金属作为阳极发生 氧化而使金属发生腐蚀。这种由于电化学作用引起 的腐蚀称为电化学腐蚀。
将含有杂质的粗锌放入稀硫酸中,腐蚀速度 比纯锌快
既有化学腐蚀,又有电化学腐蚀
H2 (气泡)
H2SO4
Zn
杂质
1 金属的电化学腐蚀
铜板上的铁铆钉为什么特别容易生锈?
i
a
i
c
r I(阳)
r I(阴)
j(电流密度)
3.2 极化曲线(polarization curve)
阴极曲线
E可逆+ΔE不可逆
阳极曲线
η阴
E可逆
η阳
电极电势
电解池中两电极的极化曲线
3.2 极化曲线(polarization curve)
η阳
E可逆 -ΔE不可逆
η阴
j(电流密度)
E可逆
电极电势
原电池中两电极的极化曲线
也可以利用滴汞电极上的浓差极化进行极谱分析。
2. 电极极化原因
2.2 电化学极化 电极反应总是分若干步进行,其中可能某一步
反应速率较慢,需要较高的活化能。 为了使电极反应顺利进行所额外施加的电压称
为电化学超电势(亦称为活化超电势) 这种极化现象称为电化学极化。
3. 超电势
在某一电流密度下,实际发生电解的电极电势不可逆 与可逆电极电势 可逆 之间的差值称为超电势。
4. 氢超电势
电解质溶液通常用水作溶剂,在电解过程中,H+ 在阴极会与金属离子竞争还原。
利用氢在电极上的超电势,可以使比氢活泼的金 属先在阴极析出,这在电镀工业上是很重要的。
例如,只有控制溶液的pH,利用氢气的析出有超 电势,才使得镀Zn,Sn,Ni,Cr等工艺成为现实。
氢在几种电极上的超电势
金属在电极上析出时超电势很小,通常可忽 略不计。而气体,特别是氢气和氧气,超电势值 较大。
E(理论分解 ) E(可逆)
2. 分解电压的测定
使用Pt电极电解HCl, 加入中性盐用来导电,实 验装置如图所示。
逐渐增加外加电压, 由安培计G和伏特计V分 别测定线路中的电流强 度I 和电压E,画出I-E曲 线。
电源
V
相关主题