数值分析 第二章2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =L 为互异节点,求证: (1)0()nkkj j j x l x x=≡∑ (0,1,,);k n =L(2)0()()0nk jj j xx l x =-≡∑ (0,1,,);k n =L证明(1) 令()kf x x =若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0()()nk n j j j L x x l x ==∑。
插值余项为(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤Q(1)()0()0n n f R x ξ+∴=∴=0()nk kj j j x l x x =∴=∑ (0,1,,);k n =L 0000(2)()()(())()()(())nk j j j n nj i k i k j j j i nnik ii kj j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑0i n ≤≤Q 又 由上题结论可知()nk ij jj x l x x ==∑()()0ni k i ik i k C x x x x -=∴=-=-=∑原式∴得证。
7设[]2(),f x C a b ∈且()()0,f a f b ==求证:21max ()()max ().8a xb a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+--=()()x b x af a f b a b x a--=+-- 1()()0()0f a f b L x ==∴=Q 又插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=-- 011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=-Q 又∴21max ()()max ().8a xb a x b f x b a f x ≤≤≤≤''≤- 8.在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?解:若插值节点为1,i i x x -和1i x +,则分段二次插值多项式的插值余项为2111()()()()()3!i i i R x f x x x x x x ξ-+'''=--- 211441()()()()max ()6i i i x R x x x x x x x f x -+-≤≤'''∴≤---设步长为h ,即11,i i i i x x h x x h -+=-=+434321().6R x e h ∴≤=若截断误差不超过610-,则62436()10100.0065.R x h h --≤≤∴≤ 9.若442,.n n n n y y y δ=∆求及,解:根据向前差分算子和中心差分算子的定义进行求解。
2n n y =44(1)n n y E y ∆=-.44044044044(1)4(1)4(1)2(21)2j j nj j n jj j jnj nn nE y j y j y j y y -=+-=-=⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=-⋅ ⎪⎝⎭=-==∑∑∑ 114422()n n y E E y δ-=-14422422()(1)2nnn n E E y E y y ----=-=∆==16.74()31,f x x x x =+++求0172,2,,2F ⎡⎤⎣⎦L 及0182,2,,2F ⎡⎤⎣⎦L 。
解:Q 74()31f x x x x =+++若2,0,1,,8ii x i ==L则[]()01(),,,!n n f f x x x n ξ=L[](7)017()7!,,,17!7!f f x x x ξ∴===L[](8)018(),,,08!f f x x x ξ==L19.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解法一:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======1130201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x x x x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-Q14A ∴=从而221()(3)4P x x x =- 解法二:采用牛顿插值,作均差表:],,[()(210101000x x x p x p =))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第四章1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则 3()0hhhhf x dx x dx --==⎰⎰ 101()(0)()0A f h A f A f h --++=故101()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。
令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()hhf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
(2)若21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1014h A A A -=++ 令()f x x =,则110A h A h -=-+ 令2()f x x =,则32211163h h A h A -=+从而解得011438383A h A h A h -⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则 22322()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故21012()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。
令4()f x x =,则22452264()5hhhhf x dx x dx h --==⎰⎰510116()(0)()3A f h A f A f h h --++=故此时,21012()()(0)()hhf x dx A f h A f A f h --≠-++⎰因此,21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
(3)若1121()[(1)2()3()]/3f x dx f f x f x -≈-++⎰令()1f x =,则1121()2[(1)2()3()]/3f x dx f f x f x -==-++⎰令()f x x =,则 120123x x =-++令2()f x x =,则 22122123x x =++从而解得120.28990.5266x x =-⎧⎨=⎩或120.68990.1266x x =⎧⎨=⎩令3()f x x =,则 11311()0f x dx x dx --==⎰⎰ 12[(1)2()3()]/30f f x f x -++≠故1121()[(1)2()3()]/3f x dx f f x f x -=-++⎰不成立。