当前位置:文档之家› 简化解析几何运算的技巧

简化解析几何运算的技巧

简化解析几何运算的技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.导,把定量的分析有机结合起来,则可使解题计算量简化,使解题构筑在较高的水平上. [典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62答案:D [方法演示]解析:由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62.[解题师说]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[应用体验]1.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P+m )2+4mx P ,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.轨迹方程的问题时,常常可以用“代点法”求解.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案:D [方法演示]解析:设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12. 又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[解题师说]本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.[应用体验]2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB的中点,则椭圆C 的离心率等于________.答案:22解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2. ∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22. 即椭圆C 的离心率e =22.也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[方法演示]解:(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0. 解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2. 同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k 4-4k 2,同理可计算得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0.[解题师说]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思路.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[应用体验]3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1,代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327, 所以S △AF 2B =S △AF 1F 2+S △BF 1F 2=12|F 1F 2|·|y 1-y 2|=12|F 1F 2|·(y 1+y 2)2-4y 1y 2=12t 2+14+3t 2.而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|)=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|)=12r 0·4a =12×8×327=1227,所以12t 2+14+3t2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆的方程为(x -1)2+y 2=2.利用曲线系解题,往往简捷明快,事半功倍,所以灵活运用曲线是解析几何中重要的解题方法和技巧之一.[典例] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=1 答案:B [方法演示]解析:由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上, 所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.[解题师说]本题利用了共渐近线系双曲线方程,可使问题马上得到解决.避免了复杂的判断、可能的分类讨论、繁杂的解方程组,事半功倍.[应用体验]4.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0B .x 2+y 2-x +7y -16=0C .x 2+y 2-4x +4y +9=0D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0, 即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝⎛⎭⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[方法演示]证明:法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件,得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1,消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b 2=1. 因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.② 由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3. 法三:设P (a cos θ,b sin θ)(0≤θ<2π),则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1. 又A (-a,0),所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ . 从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33,故|k |=1|k AQ |> 3.[解题师说]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [应用体验]5.(2018·长春质检)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且离心率为12,点P 为椭圆(1)求椭圆的方程;(2)设椭圆的左顶点为A 1,过右焦点F 2的直线l 与椭圆相交于A ,B 两点,连接A 1A ,A 1B 并延长分别交直线x =4于R ,Q 两点,问RF 2―→·QF 2―→是否为定值?若是,求出此定值;若不是,请说明理由.解:(1)已知椭圆的离心率为12,不妨设c =t ,a =2t ,则b =3t ,其中t >0,当△F 1PF 2面积取最大值时,点P 为短轴端点,因此12·2t ·3t =3,解得t =1,则椭圆的方程为x 24+y 23=1.(2)由(1)可知F 2(1,0),A 1(-2,0).设直线AB 的方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,可得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 4+3m 2,① y 1y 2=-94+3m 2,② 直线AA 1的方程为y =y 1x 1+2(x +2),直线BA 1的方程为y =y 2x 2+2(x +2),则R ⎝⎛⎭⎫4,6y 1x 1+2,Q ⎝⎛⎭⎫4,6y 2x 2+2,F 2R ―→=⎝⎛⎭⎫3,6y 1x 1+2,F 2Q ―→=⎝⎛⎭⎫3,6y 2x 2+2,则F 2R ―→·F 2Q ―→=9+6y 1x 1+2·6y 2x 2+2=6y 1my 1+3·6y 2my 2+3+9=36y 1y 2m 2y 1y 2+3m (y 1+y 2)+9+9,将①②两式代入上式,整理得F 2R ―→·F 2Q ―→=0,即F 2R ―→·F 2Q ―→为定值0.1.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33 B.23 C.22D .1 解析:选C 如图所示,设P (x0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 202p. 设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号). 2.设双曲线x 2a +y 2b =1的一条渐近线为y =-2x ,且一个焦点与抛物线y =14x 2的焦点相同,则此双曲线的方程为( )A.54x 2-5y 2=1 B .5y 2-54x 2=1 C .5x 2-54y 2=1 D.54y 2-5x 2=1 解析:选D 因为x 2=4y 的焦点为(0,1),所以双曲线的焦点在y 轴上. 因为双曲线的一条渐近线为y =-2x ,所以设双曲线的方程为y 2-4x 2=λ(λ>0), 即y 2λ-x 2λ4=1,则λ+λ4=1,λ=45,所以双曲线的方程为54y 2-5x 2=1. 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c,0),P 为双曲线上任一点,且PF 1―→·PF 2―→最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2,则该双曲线的离心率的取值范围为( ) A .(1,2] B .[2,2] C .(0,2] D .[2,+∞) 解析:选B 设P (x 0,y 0),则PF 1―→·PF 2―→=(-c -x 0,-y 0)·(c -x 0,-y 0)=x 20-c 2+y 20=a 2⎝⎛⎭⎫1+y 20b 2-c 2+y 20, 上式当y 0=0时取得最小值a 2-c 2,根据已知-34c 2≤a 2-c 2≤-12c 2,所以14c 2≤a 2≤12c 2,即2≤c 2a 2≤4,即2≤ca ≤2,所以所求离心率的取值范围是[2,2].4.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5B .4 C.43 D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2),由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2. 设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0. 故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94. 又λ>1,解得λ=4.5.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:选D 设A ⎝⎛⎭⎫y 214,y 1,B ⎝⎛⎭⎫y 224,y 2,M y 21+y 228,y 1+y 22,C (5,0)为圆心,当y 1≠-y 2时,k AB =4y 1+y 2,k CM =4(y 1+y 2)y 21+y 22-40,由k AB ·k CM =-1⇒y 21+y 22=24,所以M 3,y 1+y 22,又r 2=|CM |2=4+⎝⎛⎭⎫y 1+y 222=10+12y 1y 2,所以(2r 2-20)2=y 21y 22,所以y 21,y 22是方程t 2-24t +(2r 2-20)2=0的两个不同的正根,由Δ>0得2<r <4.所以r 的取值范围是(2,4).6.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A.2x 275+2y 225=1B.x 275+y 225=1C.x 225+y 275=1D.2x 225+2y 275=1 解析:选C 由已知得c =52,设椭圆的方程为x 2a 2-50+y 2a2=1,联立⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=12(a 2-50)10a 2-450,由题意知x 1+x 2=1,即12(a 2-50)10a 2-450=1,解得a 2=75,所以该椭圆方程为y 275+x 225=1.7.已知双曲线C :x 22-y 2=1,点M 的坐标为(0,1).设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记λ=MP ―→·MQ ―→,则λ的取值范围是________.答案:(-∞,-1]解析:设P (x 0,y 0),则Q (-x 0,-y 0),λ=MP ―→·MQ ―→=(x 0,y 0-1)·(-x 0,-y 0-1)=-x 20-y 20+1=-32x 20+2. 因为|x 0|≥2,所以λ≤-1,所以λ的取值范围是(-∞,-1].8.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.答案:1解析:由题意,设A (cos θ,sin θ),P (x ,x +2),则B (-cos θ,-sin θ), ∴P A ―→=(cos θ-x ,sin θ-x -2),PB ―→=(-cos θ-x ,-sin θ-x -2), ∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2) =x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1.9.设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝⎛⎭⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________. 答案: 6解析:由⎩⎪⎨⎪⎧x =2pt 2,y =2pt (p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝⎛⎭⎫p 2,0,|AB |=|AF |=12|CF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6.∵p >0,∴p = 6.10.已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3,∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点, 所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点,则EC ―→·ED ―→=0, 即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4,所以(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0,解得k =76,满足k 2>1.11. 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .求证:点M 在定直线上.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2. 因为抛物线E 的焦点为F ⎝⎛⎭⎫0,12,所以b =12,a =1. 所以椭圆C 的方程为x 2+4y 2=1. (2)证明:设P ⎝⎛⎭⎫m ,m22(m >0).由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m . 因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22, 得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m 2<2+ 5.(*)由根与系数的关系得x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1. 将其代入y =mx -m 22,得y 0=-m 22(4m 2+1).因为y 0x 0=-14m ,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.12.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围.解:(1)设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由题意可知2a =4,c a =32,又a 2+b 2=c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,① 设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0, 知S =12(|x 1|+|x 2|)=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2. 令k 2+3=t ,知t ≥3,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32, 故△OAB 面积的取值范围是⎝⎛⎦⎤0,32.。

相关主题