水泥熟料游离氧化钙的控制一、控制熟料游离氧化钙的重要性凡从事水泥生产的人,无不熟悉熟料游离氧化钙是关系到水泥质量的重要指标,它表示生料煅烧中氧化钙与氧化硅、氧化铝、氧化铁结合后剩余的程度,它的高低直接影响水泥的安定性及熟料强度。
但它毕竟不是水泥的最终使用性能,只是为达到产品最终使用性能所应具备的必要条件。
1. 在对该指标的控制上,确实存在着一些不够准确的认识,甚至是误区:⑴认为熟料中游离氧化钙含量越低越好,因为它表明煅烧完全,熟料质量最好;⑵只要熟料游离氧化钙高就是中控操作员没有尽到责任,所以考核指标仅与他们挂钩;⑶把压低游离氧化钙含量当作很难掌握的指标,所以将该指标当做考核操作员的最重要质量要求。
2. 对这些误区有必要做如下澄清⑴游离氧化钙含量只是水泥使用的过程指标,不是最终指标。
因为少量残存的游离氧化钙在熟料变为水泥,以至于在使用之前的整个过程中可以消解,所以并不需要出窑后熟料中的游离氧化钙含量很低,而应该付出更多的精力,摸索出最适合本企业有利于熟料强度的相关配料与操作参数,才是企业效益的根本。
⑵对窑外分解窑而言,控制熟料游离钙比立窑及传统回转窑型要容易得多,再不应该成为生产控制的难点。
所以企业不应纵容中控操作员一味追求游离氧化钙合格率及绝对含量,而不顾其它指标;更不应不惜提高热耗,而无止境地压低游离氧化钙的含量。
3. 游离氧化钙产生的原因及分类⑴轻烧游离氧化钙由于来料量不稳或塌料、掉窑皮,或燃料成分变化或火焰形状不好,使部分、乃至局部生料的煅烧温度不足,在1100~1200℃的低温下形成游离氧化钙。
主要存在于黄粉以及包裹着生料粉的夹心熟料中,它们对水泥安定性危害不大,但会使熟料强度降低。
⑵一次游离氧化钙它们是在配料氧化钙成分过高、生料过粗或煅烧不良时,熟料中存在的仍未与SiO2、Al2O3、Fe2O3进行化学反应的CaO。
这些CaO经高温煅烧呈“死烧状态”,结构致密,晶体较大(10~20µm),遇水形成很慢,通常需要三天才反应明显,至水泥硬化之后又发生固相体积膨胀(97.9%),在水泥石的内部形成局部膨胀应力,使其变形或开裂崩溃。
⑶二次游离氧化钙当刚烧成的熟料冷却速度较慢或还原气氛下,C3S分解又成为氧化钙及C2S,或熟料中碱等取代出C3S、C3A中氧化钙。
由于它们是重新游离出来的,故称为二次游离氧化钙,这类游离氧化钙水化较慢,对水泥强度、安定性均有一定影响。
所以,当生产中出现的高游离氧化钙结果时,所采取的对策不能够一概而论。
而且在所有造成游离氧化钙高的原因中,只有塌料才是预热器窑所特有需要克服、而且完全能够克服的环节,其它原因是所有旋窑都会共有的症状。
相反,对于窑外分解窑,它有生料的均匀化设施、旋风预热系统、较高的窑转速、三风道煤管等技术措施,使控制游离氧化钙的能力远远高于其它窑型,煅烧出低游离氧化钙的熟料正是它的优势。
同时,必须明确,中控操作员对游离氧化钙的含量控制手段只有火焰形状及煅烧温度。
4. 游离氧化钙过低会有如下不利:在人们都十分重视游离氧化钙高的害处时,也有必要了解游离氧化钙过低的不利之处:⑴在游离氧化钙低于0.5%以下时,熟料往往呈过烧状态,甚至是死烧。
此时的熟料质量缺乏活性,强度并不高。
⑵由于旋窑耐火砖承受了高热负荷,缩短了它的使用寿命。
⑶要充分认识到,游离氧化钙不仅是半成品的质量指标,更是关系水泥生产成本的重要经济指标。
国外有关资料报导(ICR,8/1989,P55):熟料每低0.1%游离氧化钙,每公斤熟料就要增加热耗58.5千焦(14大卡);而用此种熟料磨制水泥时,水泥磨的系统电耗就要增加0.5%。
特别是当游离氧化钙低于0.5%以下时。
国内不少企业很少观注这个概念,因此常将分解窑游离氧化钙指标笼统地定在1.5%以下(平均值0.8%左右),而未认识到对下限做出限定的必要性。
有些生产线的游离氧化钙含量虽未低到0.5%以下,只是因为该生产线还不具备这种能力,而不是对此概念有所认识。
这里不妨做一测算:如果将熟料游离氧化钙按平均1.1%控制,比0.8%提高0.3%,每公斤熟料大约可降热耗175.5千焦(42大卡),一条日产2000吨熟料的生产线每年(按运转300天计算)节煤即为:2000×1000 ×42×300/6000×1000 = 4200(吨)上式中煤的热值按6000大卡/公斤计算,这种煤的单价如是500元,每年可节约费用210万元。
如按每吨熟料计算可节约的成本:42×500/6000 = 3.5元。
再测算电耗:以水泥磨的系统电耗为40千瓦时/ 吨计,全年生产水泥100万吨的粉磨站,一年节约的电耗就是:40 ×0.5%×3×100万= 60万千瓦•时电价如按每千瓦时0.5元算,全年节省电费30万元。
通过这一简单计算便可明白,不需要任何投资,便可取得如此效益,只是要实现精细管理而已。
国外窑外分解窑的热耗先进水平已低于4.18×700千焦/公斤熟料,而我国至少要高4.18×50千焦/公斤熟料,其主要原因就是诸如此类的技术管理不够精细而已。
当然,如果游离氧化钙长时间保持低值,一定要检查是否是入窑生料成分过低造成的,否则会误认为熟料质量好,却严重影响了熟料强度。
二. 推荐对熟料游离氧化钙含量的控制指标综上所述,合理的游离钙控制范围应当为0.5~2.0%之间,加权平均值1.1%左右。
高于2.0%及低于0.5%者均为不合格品。
也就是放宽上限指标,增加考核下限。
由于各厂的实际情况会千差万别,所以各厂的技术人员可以根据本工艺线的特点,制定出不影响熟料强度及水泥安定性所允许的最高游离氧化钙上限,及最大节约热耗的下限。
如果对操作人员考核该指标,需要说明的是,对于大于2.0%的游离氧化钙,应按照下面分析的偶然与反复两类不同情况分清责任,不要一概而论都由中控操作员负责;对于小于0.5%的游离钙,除了配料过低的情况应由配料人员负责外,其余则要由中控操作员负全责。
三. 控制游离钙的操作方法1. 偶然出现不合格游离氧化钙时常见的误操作这多是由于窑尾温度低、或者有塌料、掉窑皮,甚至喂料量的不当增加而发生,解决的责任人只能是中控操作员。
但按照前述不够准确的概念,操作上会对应一种司空见惯的误操作:先打慢窑速,然后窑头加煤,应该说,这种从传统回转窑型沿用下来的操作方法对分解窑是很不适宜的。
因为:⑴加大了窑的烧成热负荷。
分解窑是以3转/分以上窑速实现高产的,慢转窑后似乎可以延长物料在窑内的停留时间,增加对游离氧化钙的吸收时间。
但是,慢转的代价是加大了料层厚度,所需要的热负荷并没有减少,反而增加了热交换的困难。
窑速减得越多,所起的负作用就越大,熟料仍然会以过高的游离氧化钙出窑。
⑵增加热耗。
有资料证实(ZKG;12/1989E314),分解后的CaO具有很高的活性,但这种活性不会长时间保持。
由于窑速的减慢而带来的活性降低,延迟了900~1300°C之间的传热,导致水泥化合物的形成热增高。
所以,降低分解窑的窑速决不是应该轻易采取的措施。
⑶缩短了耐火砖的使用周期。
窑尾段的温度已低,还突然加煤,使窑内火焰严重受挫变形,火焰形状发散,不但煤粉无法燃烧完全,而且严重伤及窑皮。
同时,减慢窑速后,物料停留时间增加一倍以上,负荷填充率及热负荷都在增大,这些都成为降低窑内耐火衬料使用寿命的因素。
⑷窑的运行状态转变为正常所需要的时间长。
这种方法至少要半小时以上。
2. 正确处理偶然出现不合格游离氧化钙的操作方法:⑴一旦发现上述异常现象,立即减少喂料,减料多少根据窑内状况异常的程度而定。
比如:塌料较大、时间较长,或窑尾温度降低较多,此时减料幅度要略大些,但不宜于一次减料过大,要保持一级预热器出口温度不能升得过快过高;⑵紧接着相应减少分解炉的喂煤,维持一级预热器出口温度略高于正常时的50℃以内,同时通知化验室增加入窑分解率的测定,确保不低于85~90%;⑶略微减少窑尾排风,以使一级出口的温度能较快恢复原有状态。
但不可减得过多,否则会造成新的塌料,也影响二、三次风的入窑量,进而影响火焰;⑷如果掉窑皮、或塌料量不大,完全可以不减慢窑速,这批料虽以不合格的熟料出窑,但对生产总体损失是最小的。
按照这种操作方式,恢复正常运行的时间只需十分钟。
如果是打慢窑,这批料不仅无法煅烧合格,而且如上所述至少耗时半个小时以上,影响熟料的产量,以及更多熟料的质量。
当然,如果脱落较多窑皮,或窜料严重,不得不大幅度降低窑速,至1转/分以内,此时更重要的是投料量要大幅度降低,为正常量的1/3左右。
而且也应减料操作在前,打慢窑速的操作在后,避免有大量物料在窑内堆积。
如此出来的熟料游离钙含量会合格,但付出的代价却是半个小时以上的正常产量、更多的燃料消耗、长时间的工艺制度不正常,以及类似中空窑煅烧的各种弊病,经济上损失较大。
⑸尽快找出窑内温度不正常的原因,对症治疗,防止类似情况再次发生。
比如:找出塌料的原因、窑尾温度降低的原因等等。
上述操作方法还要因具体情况而异,总的原则是:不要纠缠一时一事的得失,要顾全系统稳定的大局。
这个大局就是用最短时间恢复窑内火焰的正常、系统温度分布的正常,各项工艺参数的正常,并继续保持它们。
3. 反复出现不合格游离氧化钙的对策如果窑作为系统已无法正常控制熟料游离氧化钙的含量,则说明此窑已纯属带病运转。
此时完全依赖中控操作员的操作,已经力不从心。
应该由管理人员(如总工)组织力量,对有可能产生的问题针对性地逐项解决。
比如:⑴原燃料成分不稳定,需要从原燃料进厂质量控制及提高均匀化能力等措施解决。
⑵生料粉的细度跑粗,尤其是硅质校正原料的细度,需要从生料的配制操作解决,这方面往往被技术人员所忽略。
国外就此课题进行了专门研究,得出的结论是:熟料煅烧过程中,由硅酸二钙生成硅酸三钙的途径有两条:由硅酸二钙靠固相反应自我合成,析出氧化硅(见图1.4.1);或由硅酸二钙与氧化钙靠少量液相完成反应。
不论是何种方式,反应均在原有颗粒中进行,但这将与生料粒径有很大关系,粒径一定后,C2S、C3S的结晶大小就基本确定,尤其是含氧化硅原料的细度是关键,因为碳酸钙分解后形成多孔的氧化钙,是靠氧化硅向氧化钙的孔内移动后进行反应的。
大粒径的SiO2更容易形成瘤状、带状群的C2S,在生料饱和比偏高的分解窑配比情况下,既使形成了C3S,结晶也较粗大,游离钙更易形成。
研究还表明,泥灰岩要比石灰岩有更好的易烧性,原因正是由于它有更短的内部移动通道(ZKG,7/2004,P72)。
因此,在生料制备过程中,如何降低氧化硅粒径是提高生料易烧性的重要思路,但由于单独粉磨等工艺措施会增加电耗。
这里,如何优化工艺并衡量得失,是需要各企业结合自身特点进行工作的。