当前位置:
文档之家› 化学发光法的原理技术要点及评价应用
化学发光法的原理技术要点及评价应用
2.分离技术 在电磁场中进行2-3次洗涤后,很快 地将未结合的多余Ag和标记Ab洗去。
3.化学发光反应 经洗涤的磁珠中,加入H2O2和 pH纠正液NaOH,这时AE不需要催化剂即分解并 发光,由集光器接收,经光电倍增管放大,记 录1S内所产生的光子能,其积分与被测物含量
成正比,按标准曲线,仪器可计算出被测物含量。
R u ( b p y )33+
激发态
R u ( b p y )3 *
R u ( b p y )32+
基态
不稳定
光 子( 6 2 0 n m ) 返回
技术要点
1.抗原抗体结合反应 将已包被了抗体的乳胶微 粒和待测标本加入反应杯中,经温育一定时间 后,再加入AP标记抗体,温育,形成固相包被抗 体-抗原-酶标抗体复合物
二、技术类型 1.分离方法 常用磁颗粒分离技术 2.免疫学反应模式 同酶发光免疫测定技术 3.不同只是相应标记物是吖啶酯而不是酶
技术要点
1.抗原抗体结合反应 将包被McAb的磁颗粒和待 测标本加入到反应管中,标本中待测Ag与磁珠 上Ab结合,再加上AE标记Ab,经过温育,形成 磁珠Ab-Ag-AE标记Ab复合物。
根据免疫学反应模式分 1.双抗体夹心法和双抗原夹心法 3.固相抗原竞争法:
Hale Waihona Puke 荧光酶免疫测定技术反应原理图
E
E E
洗涤
E
弃上清
E
E
E
4MU
E
激 发 荧 光
碱性磷酸酶
是抗塑 体料利包微用被珠 理想标的记酶抗体荧光样抗底本原 物,生成的产物稳定并有 强的荧光强度,通过测定荧光强度进行定量。
化学发光酶免疫测定技术反应原理图
4.蠕动泵加入TPA,电极加电压,启动ECL反应过程。 该过程在电极表面周而复始地进行,产生许多光子, 光电倍增管检测光强度,其与[Ru(bpy)3]2+的浓度呈 线性关系,故可测出待测Ag的含量。
原理图
抗体包被 样本 Ru(byp)23+ 的磁珠 抗原 标记抗体
TPA缓冲 液洗涤
返回
方法评价
①标记物的再循环利用,使发光时间更长、强 度更高、易于测定;
HRP
+N2 + H2O +光
对-羟基苯乙酸(HPA)
• HPA在H2O2存在下被HRP氧化成氧化二聚体(荧光 物质),在350nm激发光作用下,发出450nm波长 的荧光,可用荧光光度计测量。
1.2 HPA
H2O2 HRP
HO
CH2 COOH +荧
光
HO
CH 2 COOH
氧化二聚体
AMPPD
• AMPPD在碱性条件下,被AP酶解生成相当稳定的 AMP-D阴离子,其有2~30min的分解半衰期,发 出波长为470nm的持续性光,在15min时其强度 达到高峰,15~60min内光强度保持相对稳定。
3.包被珠分离法:用聚苯乙稀等材料制成小珠,在 小珠上包被抗原或抗体,经抗原抗体反应后,将 结合状态和游离状态的酶标记物进行分离.
第三节 化学发光免疫测定技术(CLIA)
一、原理 用化学发光剂直接标记抗原或抗体,与 待测标本中相应Ab或Ag、磁颗粒性的Ag或Ab反 应,通过磁场把结合状态(沉淀部分)和游离 状态的化学发光剂标记物分离开来,然后加入 发光促进剂进行发光反应,通过对发光强度的 检测进行定量或定性检测 。
化学发光免疫技术
第一节 发光与化学发光剂 第二节 发光酶免疫测定(CLEIA) (chemiluminescence enzyme immunoasssay) 第三节 化学发光免疫测定技术(CLIA) (chemiluminescence immunoassay) 第四章 电化学发光免疫测定技术(ECLI) (electrochemiluminescence immunoassay)
3.化学发光:在常温下由化学反应产生的光的发射。 化学发光是一个多步骤的过程。
萤火虫荧光素
荧光素酶 ATP;O2;Mg2+
光 + AMP+ O2 + CO2 + 氧化萤火虫荧光素
返回
化学发光 • 机制:某些化合物可以利用化学反应产生的能
量使其产物分子或反应中间态分子上升至电子 激发态。当此产物分子或中间态分子衰退至基 态时,以发射光子的形式释放能量(即发光)。
方法评价
1.AE其低背景噪音、化学反应简单、快速而无催 化剂。
2.AE与大分子的结合并无减少所产生的光量, 从而增加灵敏度,灵敏度可达10-15g/ml。
3.AE标记试剂有效期长,可达一年。 4.固相分离剂为极为幼细的磁粉,除增大包被
面积,加快反应外,亦同时使清洗及分离更 简易、快捷。
第四节 电化学发光免疫测定技术(ECLI)
特别是免疫活性。
返回
1.酶促反应的发光底物
• 是指经酶的降解作用而发出光的一类发光底物。 • CLEIA中常用的酶有HRP和AP • HRP的发光底物有鲁米诺、对-羟基苯乙酸 • AP的发光底物有AMPPD、4-MUP(荧光底物) • 特点:可作标记物、也可作过氧化物酶的底物
1.1 鲁米诺
H2O2 /OH —
②敏感度高,可达pg/ml或pmol水平; ③线性范围宽>104; ④反应时间短,20min以内可完成测定; ⑤试剂稳定性好,2~5℃可保持一年以上。
五、临床应用
1.甲状腺激素
2.生殖激素
3.肾上腺/垂体激素 4.贫血因子
5.肿瘤标记物
6.感染性疾病
7.糖尿病
8.心血管系统
9.病毒标记物
10.骨代谢
三联毗啶钌 分子结构图
N
N
N
Ru
N
N
N
O O
N O
O
返回
第二节 发光酶免疫测定(CLEIA)
一、原理 属于酶免疫测定的一种。只是最后一 步酶反应所用底物为发光剂,通过发光反应 发出的光在特定的仪器上进行测定。
二、技术类型 根据酶促反应底物不同可分为: 1.荧光酶免疫测定技术 2.化学发光酶免疫测定技术
• 化学发光剂或发光底物:在化学发光反应中参 与能量转移并最终以发射光子的形式释放能量 的化合物。
• 发光剂分为荧光素、生物发光剂、化学发光剂
化学发光剂应符合以下几个条件
①能参与化学发光反应; ②与抗原或抗体偶联后形成稳定的结合物试剂; ③偶联后仍保留高的量子效应和反应动力; ④应不改变或极少改变被标记物的理化特性,
2.分离技术 将复合物转移到玻璃纤维上,用缓 冲液洗涤,没结合的抗原被洗脱,酶标抗体-抗 原-胶乳微粒抗体复合物则被保留在纤维膜上。
3.酶促发光反应 加入4-MUP,酶标抗体上AP将 4-MUP分解,形成4-MU,它在360nm激发光的照 射下,发出448nm的荧光,经荧光仪记录,放大, 根据标准曲线由电脑计算出所测物质的含量
E
E E
洗涤
E
弃上清
E
E
E
A M P P D 发 光
E
碱性磷酸酶
抗 塑
体料是通包微 利过被珠 光用酶强度对标记的发抗光测体 定底而物样抗 本原催直接化进作A M行用P P定而D 量直。接发光,
电化学发光原理图
• 这一过程可在电极表面周而复始地进行 • 产生许多光子,使光信号增强
TPA+●
电极
●
TPA
技术要点
1.三联吡啶钌标记抗体和生物素标记抗体与待测标本 同时加入一个反应杯中孵育反应
2.将链霉亲和素(SA)包被磁珠加入反应杯中,再次 孵育,使生物素(B)通过与亲和素(A)的结合, 将磁珠、Ab连接为一体,形成双Ab夹心法。
3.蠕动泵将形成的 [Ru(bpy)3]2+-Ab-Ag-Ab-B-SA-磁珠 复合体吸入流动测量室,磁珠被工作电极下面的磁铁 吸附于电极表面。同时,游离的Ab也被吸出测量室。
常用试剂:吖啶酯(acridinium,AE)
CH 3
N+
- HO 2
CO
O
CH 3 N
O CO O
R R
CH 3 N
O CO O
+ CO2+ 光
3.电化学发光剂
• 是指通过在电极表面进行电化学反应而发出 光的物质。
特点:①反应在电极进行; ②电子供体为:三丙胺(TPA) ③化学发光剂:三联毗啶钌
概念
• 化学发光免疫技术:集灵敏的化学 发光分析和特异的抗原抗体免疫测 定于一体的检测技术。
• 特点: 特异性高、敏感性高、分离简便、 快速、试剂无毒、安全稳定、 可自动化。
化学发光免疫技术的类型
• 按发光剂不同分为 1.发光酶免疫测定(CLEIA) chemiluminescence enzymeimmunoasssay 2.化学发光免疫测定技术(CLIA) chemiluminescence immunoassay 3.电化学发光免疫测定技术(ECLI) electrochemiluminescence immunoassay
1.3 AMPPD
OO
OCH 3
AP /OH —
光
O-
HPO4 2—
4-MUP
• 4-MUP被AP催化生成4-甲基伞形酮,在360nm的 激发光的作用下,发出448nm的荧光,可用荧 光光度计进行测量。
1.4 4-MUP
AP H3PO4 +
360nm 激发光
荧
4-MU
光
2.直接化学发光剂
特点:不需催化剂,只需改变溶液的pH等条件 就能发光的物质。反应迅速、背景低、 信比高,发光量与AE浓度呈线性关系。
• 按分离方法不同分 1.微粒子化学发光免疫测定 2.磁颗粒化学发光免疫测定
第一节 发光与化学发光剂