当前位置:文档之家› 基于MATLAB的语音信号的分析与处理

基于MATLAB的语音信号的分析与处理

基于MATLAB的语音信号分析与处理[摘要]语音信号的处理是一门非常重要的学科,如今普遍应用在电话通信、助听器等方面。

本次设计主要是为了在MATLAB软件的帮助下处理一段加噪的声音信号,该过程会涉及到采样定理,傅立叶变换等理论和算法在设计过程中的实际应用。

在本次设计中,我们关注的是在驱除噪声污染是所需要的滤波器的选择,充分比较各种优缺点后,再利用滤波器来驱除杂音。

通过滤波前后的声音的频谱图的比较,来了解滤波器的特性和作用,并得到本次设计的结果。

[关键词]:语音信号;MATLAB;傅立叶变换;滤波器目录摘要 (Ⅰ)1 绪论 (1)1.1 课题的研究背景及意义 (1)1.1 设计任务 (1)2 语音信号处理的基本理论知识 (1)2.1 采样频率和采样位数 (1)2.2 采样定理 (1)2.3 IIR数字滤波器 (2)2.4 FIR数字滤波器 (2)2.5 IIR数字滤波器和FIR数字滤波器的比较 (3)2.6 倒谱 (3)3 语音信号处理和理论方案 (3)3.1 语音信号的采集 (3)3.2 语音信号的处理 (4)3.3 系统框图 (4)4 语音信号处理的实例分析. (5)4.1语音文件在MATLAB平台上的录入与打开 (5)4.2原始语音信号频谱分析及仿真 (5)4.3加噪语音信号频谱分析及仿真 (8)4.4去噪及仿真 (13)4.5 语音信号的回放 (18)4.6结合去噪后的频谱图对比两种方式滤波的优缺点 (18)5 总结. (19)6 致谢. (19)参考文献 (20)1绪论1.1课题的研究背景及意义语言是我们人类所特有的功能,它是传承和记载人类几千年文明史,没有语言就没有我们今天人类的文明。

语音是语言最基本的表现形式,是相互传递信息最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。

语音信号处理属于信息科学的一个重要分支,大规模集成技术的高度发展和计算机技术的飞速前进,推动了这一技术的发展;它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。

1.2设计任务本设计先完成语音信号的采集,然后设计低通,带通等滤波器对采集到的语音信号进行滤波处理,分析语音信号各频率段的特性。

并对所采集的语音信号加入不同的干扰噪声,对加入噪声的信号进行频谱分析,针对受干扰语音信号的特点设计不同的滤波器,对加噪信号进行滤波,恢复原信号。

把原始语音信号、加噪语音信号和滤波后的信号进行时域变换和频域变换,画出它们的时域波形和频域波形图,从视觉角度比较分析滤波的效果。

2语音信号处理的基本理论知识2.1采样频率和采样位数采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

采样频率与声音频率之间有一定的关系,根据奎斯特理论,只有采样频率高于声音信号最高频率的两倍时,才能把数字信号表示的声音还原成为原来的声音。

这就是说采样频率是衡量声卡采集、记录和还原声音文件的质量标准。

采样位数即采样值或取样值,用来衡量声音波动变化的参数,是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。

采样频率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。

采样位数和采样率对于音频接口来说是最为重要的两个指标,也是选择音频接口的两个重要标准。

无论采样频率如何,理论上来说采样的位数决定了音频数据最大的力度范围。

每增加一个采样位数相当于力度范围增加了6dB。

采样位数越多则捕捉到的信号越精确。

2.2 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式:理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)2.3 IIR数字滤波器IIR(Infinite Impulse Response)数字滤波器,又名“无限脉冲响应数字滤波器”,或“递归滤波器”。

递归滤波器,也就是IIR数字滤波器,顾名思义,具有反馈,一般认为具有无限的脉冲响应。

IIR滤波器有以下几个特点:(1)封闭函数:IIR数字滤波器的系统函数可以写成封闭函数的形式。

(2)IIR数字滤波器采用递归型结构:IIR数字滤波器采用递归型结构,即结构上带有反馈环路。

IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。

由于运算中的舍入处理,使误差不断累积,有时会产生微弱的寄生振荡。

(3)借助成熟的模拟滤波器的成果:IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,其设计工作量比较小,对计算工具的要求不高。

在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,再通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。

(4)需加相位校准网络:IIR数字滤波器的相位特性不好控制,对相位要求较高时,需加相位校准网络。

2.4 FIR数字滤波器FIR数字滤波器(finite impulse response filter)又名“有限脉冲响应数字滤波器”,这类滤波器对于脉冲输入信号的响应最终趋向于0,因此而得名。

有限脉冲响应滤波器(FIR filter)的优点:(1)脉冲响应(impulse response)为有限长:造成当输入数位讯号为有限长的时候,输出数位讯号也为有限长。

(2)比无限脉冲响应滤波器(IIR filter)较容易最佳化(optimize)。

(3)线性相位(linear phase):造成h(n),是偶对称(even)或奇对称(odd)且有限长。

(4)一定是稳定的(stable):因为Z转换(Z transform)后所有的极点(pole)都在单位圆内2.5 IIR数字滤波器和FIR数字滤波器的比较不论是IIR滤波器还是FIR滤波器的设计都包括三个步骤:(1) 按照实际任务的要求,确定滤波器的性能指标。

(2) 用一个因果、稳定的离散线性时不变系统的系统函数去逼近这一性能指标。

根据不同的要求可以用IIR系统函数,也可以用FIR系统函数去逼近。

(3) 利用有限精度算法实现系统函数,包括结构选择、字长选择等。

但IIR滤波器和FIR滤波器的设计方法完全不同。

IIR滤波器设计方法有间接法和直接法,间接法是借助于模拟滤波器的设计进行的。

其设计步骤是:先设计过渡模拟滤波器得到系统函数H(s),然后将H(s)按某种方法转换成数字滤波器的系统函数H(z)。

FIR滤波器比鞥采用间接法,常用的方法有窗函数法、频率采样发和切比雪夫等波纹逼近法。

对于线性相位滤波器,经常采用FIR滤波器。

2.6 倒谱定义:倒谱定义为信号短时振幅谱的对数傅里叶反变换。

特点:具有可近似地分离并能提取出频谱包络信息和细微结构信息的特点用途:①提取声道特征信息:提取频谱包络特征,以此作为描述音韵的特征参数而应用于语音识别。

②提取音源信息:提取基音特征,以此作为描述音韵特征的辅助参数而应用于语音识别。

求法:A:短时信号;B:短时频谱;C:对数频谱; D:倒谱系数;E:对数频谱包络; F:基本周期图2-1倒谱框图3 语音信号处理和理论方案3.1 语音信号的采集利用PC机上的声卡和WINDOWS操作系统可以进行数字信号的采集。

将话筒输入计算机的语音输入插口上,启动录音机。

按下录音按钮,接着对话筒说话“课程设计”,说完后停止录音,屏幕左侧将显示所录声音的长度。

点击放音按钮,可以实现所录音的重现。

以文件名“kechengsheji.wav”保存入 F :\ 中。

可以看到,文件存储器的后缀默认为. wav ,这是WINDOWS操作系统规定的声音文件存的标准。

为了方便比较,需要在安静、无噪音、干扰小的环境下录。

3.2 语音信号的处理语言信号的处理包括信号的采集和提取,信号的调整,信号的变换,信号的滤波。

语音信号是一个随时会变化的随机信号,它的变化是不具备规律性的。

语音信号的时域分析:语音信号的变化有一个过程,在一个较短的时间内语音信号的特征基本保持不变,即语音的短时平稳性。

因而出现了短时分析技术,就是把语音信号分成一段一段来处理,这个一段所包含的的时间比较短,一般是20ms,在这么短的时间内,信号的特征一般不会变化。

所以可以把语音信号当做一个平稳过程来分析和处理语音信号。

通过短时的能量分析手段,可以知道信号的能量分布,区分信号信号中的浊音短和清音短段。

(1)提取:通过MATLAB软件中的wavread函数提取下载来的声音信号,完成该音频信号的频率,幅度等信息的提取,并得到该语音信号的波形图。

(2)调整:对原始语音信号添加一个随机函数,以此作为噪音,达到语音信号的加噪。

语音信号的频域分析:研究语音信号的频率,可以明白频率与声音的关系,一般来说,声音的高低与频率的大小有直接的关系,当然,这只是从粗浅的方面来看。

频域分析不只是研究声音与信号的频率。

还研究频率与信号功率之间的关系,这就是功率谱估计。

通过语音信号的功率谱,可以看出功率与声音信号的关系,具体应用到雷达方面的话,可以预判出分级的航行轨迹。

频域分析的方法一般有三种,其中利用傅里叶函数来研究是最常用的的方法,对一个语音信号进行快速傅立叶变换,就能得到频谱图,对信号的频谱取对数后再进行傅里叶逆变换,就能得到倒谱图。

通过对倒谱图的研究,可以解决语音识别技术中的语速变化识别的问题。

通过对语音信号频域的研究,可以充分了解信号的各种特征,知道频率与声音的联系。

(1)变换:在MATLAB软件中,对语音信号进行傅立叶变换,得到信号的频谱图。

(2)滤波:我们可以采用低通滤波、高通滤波器、带通滤波和带阻滤波的方式,来滤除语音信号中的噪声部分,并比较各种滤波之后的效果。

最后,通过用户图形界面,把滤波后的信号进行播放,进行观察,并比较前后的图形,得出结论。

3.3程序框图语音信号处理的流程如图3-1所示。

图3-1程序框图我们先进行信号的采集,采集来的信号进行四步处理,即信号提取,信号调整,信号交换,信号滤波,最后将效果显示出来。

4 语音信号分析处理和滤波4.1语音文件在MATLAB平台上的录入与打开单击自己的电脑开始程序,选择所有程序,接着选择附件,再选择娱乐,最后选择录音。

相关主题