机械能守恒定律的应用
1.机械能守恒定律的适用条件:
(1)对单个物体,只有重力或弹力做功.
(2)对某一系统,物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递, 机械能也没有转变成其它形式的能(如没有内能产生),则系统的机械能守恒.
(3)定律既适用于一个物体(实为一个物体与地球组成的系统),又适用于几个物体组成的物体系,但前提必须满足机械能守恒的条件.
2.应用机械能守恒定律解题的方法步骤
(1)选取研究对象一一物体或物体系;
(2)分析研究对象的物理过程及其初、末状态;
(3)分析物理过程中,研究对象的受力情况和这些力的做功情况,判断是否满足机械守恒定律的适用条件;
(4)规定参考平面(用转化观点时,可省略这一步);
(5)根据机械能守恒定律列方程;
(6)解方程,统一单位,进行运算,求出结果。
3.机械能守恒定律与动能定理的区别与联系
机械能守恒定律和动能定理是力学中的两条重要规律,在物理学中占有重要的地位。
(1)共同点:机械能守恒定律和动能定理都是从做功和能量变化的角度来研究物体在力的作用下状态的变化。
表达这两个规律的方程式都是标量式。
(2)不同点:机械能守恒定律的成立有条件限制,即只有重力、(弹簧)弹力做功;而动能定理的成立没有条件限制,它不但允许重力做功还允许其它力做功。
(3)动能定理一般适用于单个物体的情况,用于物体系统的情况在高中阶段非常少见;而机械能守恒定律也适用于由两个(或两个以上的)物体所组成的系统。
(4)物体所受的合外力做的功等于动能的改变;除重力(和弹力)以外的其它力做的总功等于机械能的改变。
[例1]如图所示,在同一竖直上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。
小球受到弹簧的弹性力作用后,沿斜面向上运动。
离开斜面后,运动到最高点时与静止悬挂在此处的小球B发生碰撞(碰撞过程无动能损失);碰撞后球B刚好能摆到与悬点O同一高度,球A沿水平方向抛射落在水平面C上的P点,O点的投影O'与P的距离为L/2。
已知球B质量为m,悬绳长L,视两球为质点,重力加速度为g,不计空气阻力,求:
(1)球A在两球碰撞后一瞬间的速度大小;
(2)碰后在球B摆动过程中悬绳中的最大拉力;
(3)弹簧的弹性力对球A所做的功。
H
[例2] 如下图所示,质量为M的长滑块静止在光滑水平地面上,左端固定一劲度系数为k且足够长的水平轻质弹簧,
右侧用一不可伸长的细绳连接于竖直墙上,细绳所能承受的最大拉力为T F ,使一质量为m 、初速度为0v 的小物体,在滑块上无摩擦地向左滑动而后压缩弹簧,弹簧的弹性势能表达式为22
1kx E p (k 为弹簧的劲度系数,x 为弹簧的形变量)。
(1)给出细绳被拉断的条件。
(2)长滑块在细绳拉断后被加速的过程中,所能获得的最大向左的加速度为多大?(3)小物体最后离开滑块时,相对地面速度恰好为零的条件是什么?
[例3] 光滑的长轨道形状如图所示,底部为半圆型,半径R ,固定在竖直平面内。
AB 两质量相同的小环用长为R 的轻杆连接在一起,套在轨道上。
将AB 两环从图示位置静止释放,A 环离开底部2R 。
不考虑轻杆和轨道的接触,即忽略系统机械能的损失,求:(1)AB 两环都未进入半圆型底部前,杆上的作用力。
(2)A 环到达最低点时,两球速度大小。
(3)若将杆换成长 ,A
环仍从离开底部2R
处静止释放,经过半圆型底部再次上升后离开底部的最大高度 。
巩固练习
1.如图所示,一根不可伸长的轻绳两端分别系着小球A 和物块B ,跨过固定于斜面体顶端的小滑轮O ,倾角为30°的斜面体置于水平地面上.A 的质量为m ,B 的质量为4m .开始时,用手托住A ,使OA 段绳恰处于水平伸直状态(绳中无拉力),OB 绳平行于斜面,此时B 静止不动.将A 由静止释放,在其下摆过程中,斜面体始终保持静止,下列判断中正确的是( )
A .物块
B 受到的摩擦力先减小后增大 B .地面对斜面体的摩擦力方向一直向右
C .小球A 的机械能守恒
D .小球A 的机械能不守恒,A 、B 系统的机械能守恒
2.如图所示,一质量为m 的物体放在水平地面上,上端用一根原长为L 、劲度系数为k 的轻弹簧相连.现用手拉弹簧的
R 22
上端P 缓慢向上移动.当P 点位移为H 时,物体离开地面一段距离h ,则在此过程中( )
A .拉弹簧的力对系数做功为mgH
B .拉弹簧的力对系数做功为mgh +2k mg 2)(
C .物体增加的重力势能为mgH -k mg 2
)( D .弹簧增加的弹性势能为mg(H-h)
3. 图示为某探究活动小组设计的节能运动系统。
斜面轨道倾角为30°,质量为M 木箱在轨道端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程。
下列正确的是 ( )
A .m =M
B .m =2M
C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
4.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等。
Q 与轻质弹簧相连。
设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( )
A.P 的初动能
B.P 的初动能的1/2
C.P 的初动能的1/3
D.P 的初动能的1/4
5.如图所示,质量分别为2m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自
由转动,下列选项正确的是( )
A. A 小球的机械能守恒
B. 当A 到达最低点时,A 小球的速度为v =11
8gL C. B 球能上升的最大高度 L D. 开始转动后B 球可能达到的最大速度为v m =114gL
7.某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车以速度v0经过A点,沿水平直线轨道运动L 后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。
已知赛车质量m=0.1kg,进入竖直轨道前受到阻力恒为0.3N,随后在运动中
受到的阻力均可不记。
图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。
问:
要使赛车完成比赛,v0至少为多少(取g=10 )
8.如图所示,一轻绳绕过无摩擦的两个轻质小定滑轮O1、O2和质量m B=m的小球连接,另一端与套在光滑直杆上质量m A=m的小物块连接,已知直杆两端固定,与两定滑轮在同一竖直平面内,与水平面的夹角θ=60°,直杆上C点与两定滑轮均在同一高度,C点到定滑轮O1的距离为L,重力加速度为g,设直杆足够长,小球运动过程中不会与其他物体相碰.现将小物块从C点由静止释放,试求:
(1)小球下降到最低点时,小物块的机械能(取C点所在的水平面为参考平面);
(2)小物块能下滑的最大距离;
(3)小物块在下滑距离为L时的速度大小.
9. 如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。
一不带电的绝缘小球甲,以速度υ0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下。
求的甲的速度υ
0;
(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的
质量不变,求乙在轨道上的首次落点到B点的距离范围。