一、超分子化学的概述
1973年,D.J.Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。
超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。
1987年,Nobel化学奖授予了C.J.Pederson、D.J.Cram和J.-M.Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。
[1]
超分子化学是关于若干化学物种通过分子间相互作用,包括氢键、主客体作用、疏水疏水作用、静电作用、堆积等作用结合在一起构筑的、具有高度复杂性和一定组织性的整体化学
超分子化学的定义可由下图所示
图一:从分子化学到超分子化学:分子、超分子、分子和超分子器件
由上图所示分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合,所以超分子化学也可以被定义为分子之外的化学。
图二:分子与超分子
由弱相互作用加和形成强相互作用,由各向同性通过定向组合(选择性)形成各向异性,这是分子化学和超分子化学的分界线。
超分子化学不是靠传统的共价键力,而是靠非共价键的分子间作用力,如范德华力,即由分子内的永久偶极、瞬间偶极和诱导偶极在分子间产生的静电力、诱导力和色散力的相互作用,此外还包括氢键力、离子键力、阳离子一二和叮一二堆集力以及疏水亲脂作用力等。
一般情况下,它是几种力的协同、加和,并且还具有一定的方向性和选择性,其总的结合力强度不亚于化学键。
正是这些分子间弱相互作用的协调作用(协同性、方向性和选择性决定着分子与位点的识别。
[2] 超分子化学并非高不可攀,有许多超分子结构都处于我们的日常生活中,如
的结构类似于圆弓西方把轮烯比为东方的算盘,索烃是舞池中的一对舞伴,C
60
建筑物,环糊精和当今的激光唱片一样有同样的功能--储存和释放信息,DNA双螺旋则与早餐的麻花形状相似。
图三:超分子化学结构
目前超分子化学研究的内容主要包括:分子识别,分为离子客体的受体和分子客体的受体;环糊精;生物有机体系和生物无机体系的超分子反应性及传输;固态超分子化学,分为晶体工程、二维和三维的无机网络;
二、超分子的重要特征
1、分子识别
分子识别是超分子化学的一个核心研究内容之一。
所谓分子识别即是指主体(受体)对客体(底物)选择结合并产生某种特定功能的过程。
有人把这一过程形容为锁和钥匙的关系。
在生物体系中存在着广泛的分子识别。
酶和底物之间、基因密码的转录和翻译、细胞膜的选择性吸收等等都涉及到分子识别。
[1]
图四:酶与底物的分子识别
分子识别中的主体主要有冠醚、穴醚、环糊精、杯芳烃、卟啉等大环主体化合物。
对以非共价键弱相互作用力键合起来的复杂有序且具有特定功能的分子集合体,即超分子化学的研究,可以说是共价键分子化学的一次升华,一次质的超越,被称为是“超出分子范围的化学”。
分子识别不是依赖于传统的共价键力,而是靠非共价键力,即分子间的作用力,如范德华力(VanderWaals)(包括离子-偶极,偶极-偶极和偶极-诱导偶极相互作用)、疏水作用和氢键等。
图五:冠醚图六:穴醚
图七:环糊精图八:杯芳烃
图九:卟啉
2、分子自组装
自组装和自组织的研究90年代初主要集中在生物和物理领域,而超分子化学的出现为化学在此领域的探索及应用其设计和控制的能力提供了途径和方法。
超分子化学为了实现识别、催化、传输过程和装配分子器件,都要借助于分子自组织和自组装。
从冠醚、穴醚和球状配体等的设计起就包含了分子自组织和自组装。
分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体。
分子自发地通过无数非共价键的弱相互作用力的协同作用是发生自组装的关键。
这里的“弱相互作用力”指的是氢键、范德华力、静电力、疏水作用力、ππ堆积作用、阳离子π吸附作用等。
非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性。
并不是所有分子都能够发生自组装过程,它的产生需要两个条件:自组装的动力以及导向作用。
自组装的动力指分子间的弱相互作用力的协同作用,它为分
子自组装提供能量。
自组装的导向作用指的是分子在空间的互补性,也就是说要使分子自组装发生就必须在空间的尺寸和方向上达到分子重排要求。
图十:分子自组装
分子自组装在膜材料方面的应用:
分子自组装膜,特别是自组装单分子膜(SAMs),是分子自组装研究最多的领域,并且得到了广泛的应用。
例如,SAMs在电子仪器制造、塑料成型、防蚀层研究等诸多领域都有实际应用。
SunghoKim等研究了TiO2纳米粒子与聚苯酰胺自组装薄膜聚合物膜,这种膜可消除生物污垢。
自组装单分子膜可通过含有自由运动的端基,例如硫醇,氨基等的有机分子(脂肪族或者芳香族)对电极表面改性,赋予了电极表面新的功能。
NirmalyaK.Chaki等阐述了SAMs在生物传感器上的应用,说明了单层分子膜的设计对基于SAMs的生物传感器有关键的作用。
F.Sinapi 等以多晶锌为基体利用自组装技术在乙醇溶液体系中合成了(MeO)3Si(CH2)3SH 自组装膜,并证实了这种膜是一种具有保护作用的吸收膜
图十一:自组装成膜过程
分子自组装在生物科学方面的应用:
目前分子自组装在生物科学中主要应用在酶、蛋白质、DNA、缩氨酸、磷脂的生物分子自组装膜。
这些生物分子自组装膜被广泛应用于生物传感器、分子器件、高效催化材料、医用生物材料领域。
例如,缩氨酸表面活性剂的自组装行为对于研究不含油脂的生物表面活性剂的人工合成和分子自组装的动力学具有积极的意义。
Santoso等人就利用类表面活性剂的缩氨酸分子自组装合成了纳米管纳米囊泡,研究表明其平均直径在30~50nm之间。
DNA树枝状大分子的自组装是在生命体中组蛋白DNA自组装体系人工模拟的最佳途径。
由于DNA树枝状大分子自组装体系中的DNA对核酸酶降解的阻碍作用,使得这种自组装体系的结构在基因治疗和生物医学领域有非常重要的应用。
酶、蛋白质、DNA等生物分子自组装体系,不仅保持了生物分子独特的生物功能,同时又为信息、电子科学的发展提供了微型化、智能化的材料。
随着生物技术的进一步发展和材料性能的进一步提高,生物大分子自组装体系将得到更深入的研究和更广泛的运用。
图十二:模块组装DNA的纳米结构模型[3]
三、超分子化学的前景展望
在与其他学科的交叉融合中.超分子化学已发展成了超分子科学.由于超分子学科具有广阔的应用前景和重要的理论意义。
超分子化学的研究近十多年来在国际上非常活跃,我国也积极开展这方面的研究工作。
超分子科学涉及的领域极其广泛,
不仅包括了传统的化学(如无机化学、有机化学、物理化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。
超分子化学的兴起与发展促进了许多相关学科的发展,也为它们提供了新的机遇。
基于超分子化学中的分子识别.通过分子组装等方法构筑的有序超分子体系已展示了电子转移、能量传递、物质传输、化学转换以及光、电、磁和机械运动等多种新颖特征。
超分子功能材料及智能器件、分子器件与机器、DNA芯片、导向及程控药物释放与催化抗体、高选择催化剂等等,将逐一成为现实。
科学界有人预言,分子计算机和生物计算机的实现也将指日可待。
在信息科学方面,超分子材料正向传统材料挑战,一旦突破,将带动信息及相关领域的产业技术革命.将对世界经济产生深远的影响。
可以确信,超分子科学已成为21世纪新思想、新概念和高新技术的重要源头。
四、参考文献
[1] 莱恩(Lehn,J-M.)《超分子化学:概念和展望》北京大学出版社2002
[2] 李绍箕,石劲松一种新型光催化剂的性能及应用《化学工程师》2000
[3] 葛志磊,樊春海,YANHaoDAN纳米子组装的研究进展及应用2004。