木质素的紫外光谱分析
UV术语
发色团
引起电子跃迁的不饱和基团。一般为带有π电子的基团. 例如 :
由于不同的有机分子所含有的发色团不同,组成它们的分子 轨道不同,能级不同,发生价电子跃迁的能量不同,故 λmax是UV用于结构分析的主要依据。
• 助色团
– 本身并无近紫外吸收,但与发色团相连时,常 常要影响λmax和εmax的基团。例如:
UV与IR、NMR不同,它不能用来鉴别具体 的官能团,而主要是通过考察孤对电子及π 电子的跃迁来提示分子中是否存在共轭体 系。 部分化合物的UV吸收见下表:
• UV主要反映共轭体系和芳香族化合物的结 构特征。往往两个化合物分子中相同的共 轭结构,而分子的其它部分截然不同,却 可以得到十分相似的紫外谱图。
• K带[来自德文Konjugierte(共轭)] • 起源:由π-π*跃迁引起。特指共轭体系的π-π*跃迁。 K带是最重要的UV吸收带之一,共轭双烯、α,β-不饱和醛、酮, 芳香族醛、酮以及被发色团取代的苯(如苯乙烯)等,都有K带 吸收。例如:
• 特点: • • ① λmax 210-270nm,εmax>10000; ② 溶剂极性增加时,λmax不变(双烯)或发生红移(烯酮)。
注意事项
• 木质素和木质素模型化合物易受空气氧化 和光降解,在稀碱溶液中尤其易发生这些 变化。因此用于UV分析的木质素样品溶液 最好是现配现用。另外要注意,溶液应当 在常温下配制,不可加热。切不可将溶液 置于强光尤其是强紫外光下。做离子化差 谱分析时需要配制木质素的碱性溶液,则 碱液应当在测定前才加到木质素中性溶液 中。
– 特点:助色团一般是带有p电子的基团。例如:
• 红移与蓝移
• 红移——由取代基或溶剂效应引起的λ起的λmax向短波 方向移动的现象。
• 增色效应与减色效应 • • 深色效应——使最大吸收强度(εmax)增加的效应。 浅色效应——使最大吸收强度(εmax)降低的效应。
• 其次,木质素的最大吸收波长会因溶剂的 改变而改变。溶剂对吸收光谱的影响主要 来自溶剂的极性,另外也与木质素苯环上 取代基的性质有关。极性溶剂,如水、乙 醇、甲基纤维素溶剂等,容易导致含有吸 电子取代基的木质素紫外光谱谱带蓝移。 同样的溶剂,可以使带有推电子取代基的 木质素紫外光谱发生红移。一个引起人们 兴趣的现象是,红移一般伴随有深色效应 ,而蓝移一般伴有浅色效应。
• 木质素改性对紫外光谱的影响: 一般地说, 凡是向木质素侧链上引入不饱和结构的改 性反应,或者是向芳香环引入取代基的反 应,都可能使最大吸收峰发生红移。反之, 凡是封闭酚羟基或者是减少发色基团的反 应,都会使最大吸收峰发生蓝移。
• 进行木质素的紫外光谱分析相当容易。用 紫外光谱可以用来研究木质素的官能团, 尤其是用这种方法可以测定酚羟基的含量。 离子化的羟基和醛基结构可以产生吸收峰 的红移。
• 用这种方法测定酚羟基的含量需要先测定 酚模型物的摩尔吸光系数. • Aulin Erdtman等测定了云杉木质素可溶性部 分以及云杉和异叶铁杉Brauns木质素的酚羟 基含量
• 导数紫外光谱是以吸光度对波长的导数(dnA/dλn) 对波长λ的图谱。随着n的变化,可以得到不同阶数 的导数光谱。导数紫外光谱一般可以通过三种方法 获得。第一种是通过特殊的光学设计来产生导数光 谱,此为化学法;第二种是电子学方法获得导数光 谱,第三种则是数值微分法。无论哪一种导数光谱, 其本质都是测量信号强度分布的斜率。导数光谱可 以显著地减小谱带宽度,而且随着导数阶数的增加, 谱带变锐,带宽变窄,因此可将零级光谱基本相似 的物质分开。 • 一般地说,微分阶数越高,分辨率越好,抗干扰性 强,但同时所需技术要求也越高。因此导数光谱微 分阶数需要在实际工作中确定。目前一阶和二阶导 数光谱使用较多。
木质素的紫外光谱分析
紫外吸收光谱的原理
• 紫外光谱的产生是由于有机分子在入射光 的作用下,发生了价电子的跃迁,使分子 中的价电子由基态E0跃迁到激发态E1。
• 分子的结构不同,跃迁电子的能级差不同, 从而分子UV吸收的λmax不同;另外,发生 各种电子跃迁的机率也不同,反映在紫外 吸收上为εmax不同。 • 因而可根据λmax和εmax了解一些分子结构的 信息。
用于木质素紫外分析的溶剂
样品 硫酸盐木质素,碱木质素,有机溶剂木 质素 木质素磺酸盐 磨木木质素 木质素模型化合物 溶剂 二甲基甲酰胺,2-甲氧基乙醇/水 (8:2,v/v) 水,乙醇/水(8:2,v/v) 二甲基甲酰胺,乙醇/水(8:2, v/v),2甲氧基乙醇/水(8:2, v/v) 水,环己烷,乙醇,2-甲氧基乙醇/水 (8:2, v/v)
• 当把二阶导数光谱应用于木质素模型化合 物、磨木木质素、木质素磺酸盐时,可以 观察到比普通紫外吸收光谱更细致的谱图, 并且,可以非常准确地测得样品的最大吸 收波长。
• 化学改性会对木质素的紫外吸收有一定影 响。一般地说,凡是向木质素侧链上引入 不饱和结构的改性反应,或者是向芳香环 引入取代基的反应,都可能使最大吸收峰 发生红移。反之,凡是封闭酚羟基或者是 减少发色基团的反应,都会使最大吸收峰 发生蓝移。这些规律可以用于帮助人们判 断木质素发生了何种改性反应。
• B带和E带 • B—德文Benzienoid(苯系) E—德文Ethylenic(乙烯 型) 起源:均由苯环的π-π*跃迁引起。是苯环的UV特征吸 收。 特点: ①B带为宽峰,有精细结构 (苯的B带在230~270nm)
εmax偏低:200<ε<3000
(苯的ε为215);
② E1带特强,(εmax >10000) ; E2带中等强度,(2000<εmax <10000) ③ 苯环上引入取代基时,E2红移,但一般不超过 210nm。如果E2带红移超过210nm,将衍变为K带。
• 波长范围:100~800 nm. • (1) 远紫外光区: 100~200nm • (2) 近紫外光区: 200~400nm • (3)可见光区:400~800nm • 普通紫外区对有机物结构分析的用处最大。共轭体系以 及芳香族化合物在此区域内有吸收,是紫外光谱讨论的 主要对象。 • 可见光区与普通紫外区基本上没有太大的差别,只是光 源不同,普通紫外区用氢灯,可见光区用钨丝灯。
①同一种物质对不同波长光的吸光 度不同。吸光度最大处对应的波长 称为最大吸收波长λ max ②不同浓度的同一种物质,其吸收 曲线形状相似λ max不变。而对于不 同物质,它们的吸收曲线形状和 λ max则不同。 ③吸收曲线可以提供物质的结构信息,并作为物质定性分析 的依据之一。
UV谱图的作用及解析
• 紫外光谱可用于结构鉴定和定量分析。
• 电子跃迁的同时,伴随着振动转动能级的
跃迁;紫外光谱的特征是带状光谱
– 为什么是带状光谱而没有明显的尖峰?
loge loge1
loge2
lmax1
lmax2
l/nm
• 横坐标——波长λ,以nm表示。 • 纵坐标——吸收强度,以A(吸光度)或ε(mol吸光系数)表示。
• 紫外光谱可以用来研究木质素的官能团, 尤其是可以用于测定酚羟基的含量。例如 ,TAPPI标准UM250规定用紫外分光光度法 测定原料和纸浆中的酸溶木质素时, 需在 205nm波长处测定. 此波长下的吸光系数为 110L/(g· cm)。另外,苯基香豆满和松柏醛结 构也可以用波谱方法表征。还有一些具有 松柏基的模型物的结构也可以用紫外光谱 加以验证。
• 为什么在205nm处测定? • 因为280nm处有碳水化合物的降解产物(注 意不是碳水化合物本身!)
• 进行木质素的紫外光谱分析时,溶剂的选 择极为重要。如果选择不当,则很难得到 理想的结果。
• 首先,所用溶剂必须是待测样品的良溶剂 ,这样才可能形成样品的真溶液,并且最 终测得最大的吸光度。如果样品有少量不 溶,则导致测得的摩尔光系数偏低。其实 ,要为木质素和木质素的模型化合物找到 一种合适的溶剂并难,但是高相对分子质 量的木质素和水不溶性木质素中往往含有 一些难溶胶质。这些杂质的存在是造成测 定结果偏差的主要原因。
识别上述几种吸收带,对推导有机化合物的结构 将会有很大的帮助。
物质对光的选择性吸收及吸收曲线
M + 热
M + h 基态
E1
→
M* 激发态
M + 荧光或磷光
(△E)
E2
E = E2 - E1 = h 量子化 ;选择性吸收
吸收曲线与最大吸收波长 l max
用不同波长的单色光照 射,测吸光度
关于吸收曲线的讨论
• • • •
中性光谱 离子差示光谱 还原光谱 导数光谱
• 酚羟基的含量可以通过测定中性和碱性溶 液中的吸光度之差加以确定。在强碱性溶 液中,最大吸收波长范围的吸光度会因为 酚盐离子的存在而增加。吸光度的增加可 以用于酚羟基的定量计算。 • 这种方法是Goldschmid等人在Δεi的基础上 提出的。现在称为离子差示紫外光谱法。
• 针叶材,阔叶材和非木材木质素的紫外光谱 有什么特点? • 前面讲过,木质素在200~208nm处和 268~287nm左右有两个吸收峰,而在 227~233nm以及330~340nm处有两个肩峰。 其中,针叶木木质素的最大吸收位于 280~285nm, 而阔叶木木质素的最大吸收位 于274~276nm,并且阔叶木木质素在 235.9nm, 239nm, 242.4nm等处也有吸收。 请大家查一下这些吸收峰的归属。
例如,雄甾-4-烯-3-酮(a)和4-甲基-3-戊烯-2-酮(b)的紫外光谱。 二者 结构差别很大, 但紫外光谱非常接近.
木质素的紫外光谱
• 作为一种芳香化合物,木质素在紫外波段 有很强的吸收。一般的木质素在 200~208nm处和268~287nm左右有两个吸 收峰,而在227~233nm以及330~340nm处 有两个肩峰。其中,针叶木木质素的最大 吸收位于280~285nm, 而阔叶木木质素的最 大吸收位于274~276nm。