第六章万有引力与航天第一节行星的运动从古到今,人类不仅创作了关于星空的神话、史诗,也在孜孜不倦地探索日月星辰的运动奥秘.所谓“斗转星移”,从古希腊科学家托勒密的地心说、波兰天文学家哥白尼的日心说到丹麦天文学家第谷的观测资料和德国天文学家开普勒的三大定律,人们终于认识到了行星运动的规律.1.了解地心说和日心说的基本内容及其代表人物.2.知道人类对行星运动的认识过程是漫长的,了解对天体运动正确认识的重要性.3.理解开普勒三定律,知道其科学价值,了解第三定律中k值的大小只与中心天体有关.4.了解处理行星运动问题的基本思路,体会科学家的科学态度和科学精神.一、两种学说内容代表人物地球是宇宙的中心,而且是静止不动的,太阳、月亮以及地心说托勒密(古希腊)其他行星都绕地球运动太阳是宇宙的中心,是静止不动的,地球和其他行星都绕哥白尼(波兰)日心说太阳运动二、开普勒行星运动定律公式:a3T2=k,k是一个与行星无关的常量三、开普勒行星运动定律的实际应用1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.对某一行星来说,它绕太阳转动的角速度(或线速度)大小不变,即行星做匀速圆周运动.3.所有行星轨道半径的三次方跟它的公转周期的二次方比值都相等.行星运动的模型一、模型特点1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.对某一行星,它绕太阳运动的角速度(或环绕速度大小)不变,行星做匀速圆周运动.3.所有行星轨道半径的三次方跟它的公转周期的二次方的比值相同.若用r表示轨道半径,T表示公转周期,则r3T2=k.二、典例剖析飞船沿半径为r 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示.如果地球半径为r 0,求飞船由A 点到B 点所需的时间.解析:由开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时其半长轴的三次方跟周期平方的比值.飞船椭圆轨道的半长轴为r +r 02,设飞船沿椭圆轨道运动的周期为T′,则有r 3T 2=(r +r 0)38T ′2.而飞船从A 到B 点所需的时间为:t =T ′2=28⎝⎛⎭⎫1+r 0r 32·T.答案:28⎝⎛⎭⎫1+r 0r 32·T第二、三节 太阳与行星间的引力 万有引力定律哥白尼说:“太阳坐在它的皇位上,管理着围绕着它的一切星球”,那么是什么原因使行星绕太阳运动呢?伽利略、开普勒以及法国数学家笛卡尔都提出过自己的解释.然而,只有牛顿才给出了正确的解释……1.知道行星绕太阳运动的原因及行星绕太阳做圆周运动的向心力来源.2.了解万有引力定律的发现过程,会用其公式解决有关问题,注意公式的适用条件. 3.知道万有引力常量的测定方法及其在物理学上的重要意义.1.太阳与行星间的引力. (1)太阳对行星的引力.假设行星以太阳为圆心做匀速圆周运动,那么太阳对行星的引力就为做匀速圆周运动的行星提供向心力.①设行星的质量为m ,线速度为v ,行星到太阳的距离为r ,太阳的质量为M.由向心力公式F =m 4π2T 2r 和开普勒第三定律r 3T 2=k ,得F =4π2k ·m r2.②这表明:太阳对不同行星的引力,与行星的质量m 成正比,与行星和太阳间距离的二次方成反比,即F∝mr2.(2)行星对太阳的引力.如图所示,太阳对行星的引力F 与行星的质量成正比,即与受力物体的质量成正比.由牛顿第三定律知,太阳吸引行星,则行星也必然吸引太阳,且吸引力应该与太阳质量M 成正比,与行星和太阳间距离的二次方成反比,即F′∝M r2.(3)太阳与行星间的引力.①太阳与行星之间的引力大小与太阳的质量、行星的质量成正比,与两者距离的二次方成反比,即F ∝Mm r 2,写成公式就是F =G Mmr2.②太阳与行星间引力的方向沿二者的连线. 2.月一地检验.(1)牛顿的思考:太阳对地球的引力、地球对月球的引力以及地球对地面上物体的引力都是同一种性质的力,其大小可由公式F =G Mmr计算.(2)月—地检验:如果猜想正确,月球在轨道上运动的向心加速度与地面重力加速度的比值,应该等于地球半径平方与月球轨道半径平方之比,即13 600. (3)检验的过程:①理论分析:设地球半径为r 地,地球和月球间距离为r 地月.②天文观测(4)检验的结果:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力,遵从相同的规律.3.万有引力定律.(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的平方成反比.(2)公式:F =G m 1m 2r2.(3)引力常量:英国物理学家卡文迪许较准确地得出了G 的数值,现在通常取G =6.67×10-11N ·m 2/kg 2.物理中常用的思想方法一、常用方法 1.理想化模型法.在研究物理问题时,忽略次要因素,关注主要因素,根据实际物体或实际过程抽象出来理想化模型,是中学物理中用的一种方法,前面接触的质点、匀速直线运动等都是理想化模型.2.类比法.由一类事物所具有的某种属性,推测出与其类似的事物也应具有这种属性的推理方法.在引入一些十分抽象的,看不见、摸不着的物理量时,经常用到类比法.3.等效法.在保证效果相同的前提下,将陌生的、复杂的、难处理的问题转换成熟悉的、容易的、易处理的问题的一种方法.等效法可分为等效原理、等效概念、等效方法、等效过程等.4.控制变量法.物理中对于多因素的问题,常常采用控制因素的方法,把多因素的问题变成多个单因素的问题.每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对问题的影响.二、典例剖析有一质量为M 、半径为r ,密度均匀的球体,在距离球心O 为2r 的地方有一质量为m 的质点,现在从M 中挖去一半径为r2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?点拨:仔细观察球体挖去部分及完整球体的形状特点,可知,完整部分与质点m 以及挖去部分与质点m 间万有引力均可用公式计算,由此联想到利用等效割补的方式先将剩余部分还原为完整体,计算出万有引力,然后计算出割去部分与质点m 间的万有引力,两者之差即为所求.解析:设被挖小球的质量为M′,其球心到质点间的距离为r′. 由题意,知M′=M 8,r ′=32r.由万有引力定律,得F 1=G Mm (2r )2=GMm4r 2,F 2=G M ′m r ′2=G M 8m ⎝ ⎛⎭⎪⎫32r 2=GMm 18r2,所以剩下部分对m 的万有引力为F =F 1-F 2=7GMm36r 2.答案:7GMm 36r 2第四节 万有引力理论的成就阿基米德曾说过一句话:“假如给我一个杠杆,一个支点,我就能撬动地球.”他想,地球的质量可以通过计算这个杠杆的动力臂与阻力臂的比来得出,相信很多人都有同样的想法.这当然不能够实现,但现在我们可以用“万有引力定律”这个法宝来“测”地球和太阳的质量.1.了解万有引力定律在天文学上的应用.2.会用万有引力定律计算天体的质量,理解“称量地球的质量”“计算太阳的质量”的基本思路.3.认识万有引力定律的科学成就,体会科学思想方法.一、计算中心天体的质量和密度 1.天体质量的计算.(1)对于有卫星的天体,可认为卫星绕中心天体做匀速圆周运动,中心天体对卫星的万有引力提供卫星做匀速圆周运动的向心力.若已知卫星绕中心天体做圆周运动的周期T 和半径r ,则由G mM r 2=mr 4π2T2,解得中心天体的质量为M =4π2r3GT2.如果测出周期T 和半径r ,就可以算出中心天体的质量.(2)对于没有卫星的天体(或虽有卫星,但不知道卫星运行的相关物理量),可忽略天体自转的影响,根据万有引力等于重力的关系列式,计算天体质量.若已知天体的半径r 和该天体表面的重力加速度g ,则有mg =G mMr 2.解得天体的质量为M =gR2G .2.天体密度的计算.如果中心天体为球体,则密度ρ=M V =4π2r3GT 243πR 3=3πr3GT 2R 3,式中R 为中心天体的半径,r为中心天体与行星(卫星)间的距离.特例:当做匀速圆周运动的天体在中心天体表面运行时,r =R ,则ρ=3πGT .二、发现未知天体 1.海王星的发现过程.18世纪,人们观测发现,1781年发现的太阳系的第七颗行星——天王星的运动轨道与根据万有引力定律计算出来的轨道总有一些偏差.英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,各自独立地利用万有引力定律计算出这颗行星的轨道.1846年9月23日晚,德国的伽勒在勒维耶预言的附近发现了这颗行星,人们称其为“笔尖下发现的行星”.后来,这颗行星命名为海王星.2.哈雷彗星的“按时回归”.1705年,英国天文学家哈雷根据万有引力定律计算了一颗著名彗星的轨道并正确预言了它的回归,这就是哈雷彗星.解决天体运动问题的两条思路一、两条思路1.我们在应用万有引力定律解决有关天体运动问题时,常把天体的运动近似看做匀速圆周运动,其所需向心力由万有引力提供,有下列关系式可选用:G Mmr2=⎩⎪⎨⎪⎧ma 向m v2r m ω2r m ωv m 4π2T 2r由此可推出重要比例关系: a 向=G M r 2,或a 向∝1r2;v =GM r ,或v∝1r; ω=GM r 3,或ω∝1r3;T =2πr 3GM,或T∝r 3. 2.根据研究问题的实际情况,还可以利用物体在地球(天体)表面时受到的引力等于物体的重力这一关系,即mg =G MmR2.式中的R 为地球(天体)的半径,g 为地球(天体)表面物体的重力加速度. 则可以得到GM =gR 2,此式被称为“黄金代换”公式. 二、典例剖析已知地球半径约为 6.4×106m ,已知月球绕地球的运动可近似看做匀速圆周运动,运动周期为27天,则可估算出月球到地心的距离约为____m(结果只保留一位有效数字).解析:由地球表面物体的重力近似等于万有引力,即mg =GMmR 2.由月球绕地球做圆周运动的向心力为地球对它的万有引力,有 G Mm 月r 2=m 月⎝ ⎛⎭⎪⎫2πT 2r ,整理得r =3GMT 24π2=3R 2T 2g 4π2.地球表面的重力加速度g 取10 m/s 2,月球的运动周期T =27天,代入数据得r =4×108m. 答案:4×108第五节宇宙航行“嫦娥三号”卫星是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.“嫦娥三号”要携带探测器在月球着陆,实现月面巡视、月夜生存等重大突破,开展月表地形地貌与地质构造、矿物组成和化学成分等探测活动.根据中国探月工程三步走的规划,中国将在2013年前后进行首次月球软着陆探测和自动巡视勘察.1.了解人造地球卫星的最初构想.2.知道三个宇宙速度的含义,会推导第一宇宙速度的表达式.3.掌握人造地球卫星的线速度、角速度、周期和半径的关系.4.能运用万有引力定律及匀速圆周运动的规律解决卫星运动的有关问题.一、人造卫星1.牛顿对人造卫星原理的描绘.设想在高山上有一门大炮,水平发射炮弹,初速度越大,水平射程就越大.可以想象,当初速度足够大时,这颗炮弹将不会落到地面,将和月球一样成为地球的一颗人造地球卫星.2.人造卫星绕地球运行的动力学原因.人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星做圆周运动的向心力由万有引力提供.3.人造卫星的运动可近似地看做匀速圆周运动,其向心力就是地球对它的吸引力. G Mm r 2=mv 2r =mω2r =m 4π2T 2r . 由此得出卫星的线速度、角速度、周期与轨道半径r 的关系:v 由此可见,卫星的轨道半径确定后,其线速度、角速度和周期也唯一确定,与卫星的质量无关,即同一轨道上的不同卫星具有相同的周期、线速度及角速度,而且对于不同轨道,轨道半径越小,卫星线速度和角速度越大,周期越小.二、宇宙速度1.物体在地面附近绕地球做匀速圆周运动的速度,叫做第一宇宙速度,也叫地面附近的环绕速度.2.近地卫星的轨道半径为:r =R ,万有引力提供向心力,则有GMm R 2=m v 2R.从而第一宇宙速度为:v =7.9km/s. 3.第二宇宙速度的大小为11.2_km/s .如果在地面附近发射飞行器,发射速度7.9 km/s<v<11.2 km/s ;则它绕地面运行的轨迹是椭圆.4.第三宇宙速度的大小为16.7_km/s ,即若在地面附近发射一个物体,使物体能够挣脱太阳引力的束缚,飞到太阳系外,则必须使它的速度等于或大于第三宇宙速度.卫星的变轨一、如何变轨人造地球卫星在发射的过程中,需要把开始的椭圆轨道调整为圆轨道,在卫星的回收过程中,需要把圆轨道调整为椭圆轨道.如何才能实现圆与椭圆的互相转变?人造地球卫星运行轨道的改变是通过它自带的推进器来实现的.如图所示为一人造地球卫星从椭圆轨道的远地点进入圆形轨道的示意图.椭圆是人造地球卫星正在运行的轨道,大圆是以地心为圆心,以远地点A 到地心距离r 2为半径的圆.当卫星在椭圆上运动到A 点和在大圆上运动到A 点时,离地心的距离相同,万有引力F =GMm r 22大小相同,由F =ma 知,加速度的大小相同.若人造地球卫星沿椭圆轨道运行,在A 点时对应曲率半径为r 1,则向心加速度a 1=v 21r 1;若沿大圆轨道运行时,在A 点的向心加速度a 2=v 22r 2,因为a 1=a 2,即v 21r 1=v 22r 2,又r 1<r 2,所以v 1<v 2.由于这个原因,人造地球卫星要从椭圆轨道进入大圆轨道,只要在到达远地点A 时,用推进器向后喷气使其加速,当速度达到沿大圆运动时的速度v 2时,它就不再沿椭圆运行而沿大圆做圆周运动了.地球同步卫星就是利用这种原理进入同步轨道并保持在这条轨道上运行的.若人造卫星原来在大圆上运行,则当它经过远地点A 时,利用推进器向前喷气使自己的速度减小到沿椭圆运行的速度v 1时,它就从大圆轨道上到了椭圆轨道上.二、变轨问题的两点技巧1.当卫星绕天体做匀速圆周运动时,万有引力提供向心力,由G Mm r 2=m v 2r ,得v =GM r,由此可见轨道半径r 越大,线速度v 越小.当由于某原因速度v 突然改变时,若速度v 突然减小,则F>m v 2r ,卫星将做近心运动,轨迹为椭圆;若速度v 突然增大,则F<m v 2r,卫星将做离心运动,轨道变为椭圆,此时可用开普勒第三定律分析其运动.2.卫星到达椭圆轨道与圆轨道的切点时,卫星受到的万有引力相同,所以加速度相同.三、典例剖析(多选)发射地球同步卫星,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D .卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度点拨:卫星的加速度a =G M r 2,只与卫星到地心的距离r 有关,与卫星的轨道无关.卫星在不同轨道上的角速度ω、线速度v 的大小关系可根据F 万=F 向得出.解析:本题主要考查人造地球卫星的运动,尤其是考查了同步卫星的发射过程,对考生理解物理模型有很高的要求.由G Mm r 2=m v 2r 得,v =GM r .因为r 3>r 1,所以v 3<v 1.由G Mm r 2=mω2r 得,ω=GM r3.因为r 3>r 1,所以ω3<ω1.卫星在轨道1上经Q 点时的加速度为地球引力产生的加速度,而在轨道2上经过Q 点时,也只有地球引力产生加速度,故应相等.同理,卫星在轨道2上经P 点时的加速度等于它在轨道3上经过P 点时的加速度.答案:BD第六节 经典力学的局限性20世纪30年代,爱因斯坦提出了“虫洞”理论.所谓“虫洞”是宇宙中的隧道,它能扭曲空间,可以让原本相隔亿万千米的地方近在咫尺.科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置.现在,人类被“困”在地球上,要航行到最近的一个星系,动辄需要数百年时间,是目前人类不可能办到的.但是,未来的太空航行如使用“虫洞”,那么一瞬间就能到达宇宙中遥远的地方.“如果你希望知道地球距今一百万年后的样子,我可以告诉你方法.”格林说:“先建好一艘太空船,然后以接近光速的高速度开始飞行.当你在高速飞行的飞船上过了一年返回地球时,走出飞船后你会发现地球上已经过了100万年——你已经到了地球上的未来.”1.了解经典力学的发展历程和伟大成就.2.认识经典力学的局限性和适用范围,了解相对论的时空观.3.了解相对论、量子力学的建立对人类深入认识客观世界的作用.一、从低速到高速1.经典力学的基础是牛顿运动定律,牛顿运动定律和万有引力定律在宏观、低速、弱引力的广阔领域,包括天体力学的研究中,经受了实践的检验,取得了巨大的成就.2.狭义相对论阐述的是物体以接近光的速度运动时所遵从的规律.3.在经典力学中,物体的质量是不变的,而狭义相对论指出,质量要随物体运动速度的增大而增大,即m ,两者在速度远小于光速的条件下是统一的.4.经典力学认为位移和时间的测量与参考系无关,相对论认为,统一过程的位移和时间的测量与参考系有关,在不同的参考系中测量结果不同.二、从宏观到微观1.电子、质子、中子等微观粒子不仅有粒子性,同时还具有波动性,它们的运动规律在很多情况下不能用经典力学来说明,而量子力学能够正确地描述微观粒子的运动规律.2.经典力学的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.三、从弱引力到强引力1.弱引力与强引力.(1)每一个天体都有一个引力半径,半径的大小由天体的质量决定.(2)当天体间的距离远大于引力半径时,它们间的引力就是弱引力.(3)当天体间的距离远小于引力半径时,它们间的引力就是强引力.2.经典力学与行星轨道的矛盾.按照牛顿的万有引力理论,行星应该沿着一些椭圆轨道做周期性运动,而天文观测表明,行星的轨道并不是严格闭合的,它们的近日点在不断地旋进,如水星的运动.实际观测到的水星的运动情况与爱因斯坦广义相对论的计算结果吻合得很好.规律方法总结应用万有引力定律研究天体运动问题是高中物理的重要内容和高考热点,在分析天体运动问题时,要注意模型构建思想的应用.1.建立质点模型.天体有自然天体(如地球、月亮)和人造天体(如宇宙飞船、人造卫星)两种,无论是哪种天体,不管它的体积有多大,在分析天体问题时,应把研究对象看做质点.人造天体直接看做一个质点,自然天体看做是位于球心位置的一个质点.2.建立匀速圆周运动模型.行星与卫星的绕行轨道大都是椭圆,但用圆周运动知识处理近似圆的椭圆轨道问题,误差不大并且方便解决,因此天体的运动就抽象为质点之间相互绕转的匀速圆周运动.3.常见的匀速圆周运动三种绕行模型.(1)核星模型:这种天体运动模型中,一般由运行天体绕中心天体(视为静止)做匀速圆周运动,即为常规性运动模型.(2)双星模型:在天体模型中,将两颗彼此距离较近的恒星称为双星,它们在相互之间的万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动.(3)三星模型:宇宙中存在一些离其他恒星较远的三颗星组成的相对稳定的系统,三颗星可能构成稳定的正三角形,也可能在同一直线上.专题一万有引力定律及其应用万有引力定律揭示了自然界中物体间普遍存在的一种基本相互作用规律.将地面上物体的运动与天体的运动统一起来.万有引力定律的具体应用有:根据其规律发现新的天体,测天体质量,计算天体密度,研究天体的运动规律等,同时也是现代空间技术的理论基础.这一部分内容公式变化多,各种关系复杂,要紧紧把握住“万有引力提供向心力”这一点来进行,是高考的热点,也是学习的难点.1.建立两种模型.一是绕行天体的质点模型;二是绕行天体与中心天体之间依靠两者之间万有引力提供向心力的匀速圆周运动模型.2.抓住两条思路.天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的综合应用,解决问题的基本思路有两条:(1)利用在中心天体表面或附近,万有引力近似等于重力即G Mm r 2=mg 0(g 0表示天体表面的重力加速度).注意:在研究卫星的问题中,若已知中心天体表面的重力加速度g 0时,常运用GM =g 0R 2作为桥梁,把“地上”和“天上”联系起来.由于这种代换的作用巨大,此式通常称为黄金代换式.(2)利用万有引力提供向心力.即G Mm r 2=ma ,a =v 2r =ω2r =ωv=4π2T 2r. 注意:向心加速度的几种表达形式,要根据具体问题,把这几种表达式代入公式,讨论相关问题.3.澄清几个模糊概念.(1)不同公式和问题中的r 含义不同.如在公式G Mm R 2=mg 中,R 表示地球的半径;在公式G Mm r 2=ma 中,r 是指两天体之间的距离,而a =v 2r =ω2r =ωv=4π2T 2r 中的r 指的是某天体做圆周运动的轨道半径,若轨道为椭圆则是该天体运动所在点处的曲率半径.一般地说,两个r 不相等,只有对于那些在万有引力作用下,围绕某中心天体做圆周运动的天体来说,两个r 才相等.(2)天体半径和卫星轨道半径的区别.天体半径反映天体大小,而卫星轨道半径是卫星绕天体做圆周运动的半径,一般地说,卫星的轨道半径总大于该天体的半径,只有卫星贴近天体表面运行时,可近似认为卫星轨道半径等于天体半径.误区警示:(1)(2)中提到的问题,在有关天体绕行,特别是双星问题以及天体密度的求解中最容易出错,应引起重视.(3)万有引力与重力.物体的重力并不等于地球对物体的万有引力,重力实际上是地球对物体的万有引力的一个分力.但由于两者差距不大所以通常情况下认为两者相等(不考虑地球自转).①地球表面附近,G Mm R 2=mg ,所以g =GM R 2(其中g 为地球附近重力加速度,M 为地球的质量,R 为地球的半径,G 为引力常量).②离地面高h 处,G Mm (R +h )2=mg′,所以g′=GM (R +h )2. ③绕地球运动的物体的重力等于万有引力,且提供向心力:mg′=G Mm r 2=F 向. (4)随地球自转的物体向心加速度和环绕运行的向心加速度不同.放在地球上的物体随地球自转做匀速圆周运动,所以具有向心加速度,该加速度是地球对物体的引力和地面支持力的合力提供的(赤道处G Mm R 2-mg =mω2R),一般来讲是很小的;环绕地球运行的卫星,具有向心加速度,该加速度完全由地球对其的万有引力提供⎝ ⎛⎭⎪⎫G Mm r 2=m v 2r . 两处向心加速度的数值是不同的.如:质量为1 kg 的物体在赤道上随地球自转的向心加速度是0.34 m/s 2,而假设它成为紧贴地面飞行的一颗卫星,其环绕运行的向心加速度为9.8 m/s 2.土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动,其中有两个岩石颗粒A 和B 与土星中心的距离分别为r A =8.0×105 km 和r B =1.2×105 km.忽略所有岩石颗粒间的相互作用(结果可用根式表示).(1)求岩石颗粒A 和B 的线速度之比;(2)求岩石颗粒A 和B 的周期之比;(3)土星探测器上有一物体,在地球上重为10 N ,推算出它距土星中心 3.2×105 km 处受到土星的引力为0.38 N .已知地球半径为6.4×103 km ,请估算土星质量是地球质量的多少倍.解析:(1)设土星质量为M 0,颗粒质量为m ,颗粒距土星中心距离为r ,线速度为v ,根据牛顿第二定律和万有引力定律可得。