当前位置:文档之家› 伴随矩阵的性质知识讲解

伴随矩阵的性质知识讲解

伴随矩阵的性质编号2009011118毕业论文(设计)( 2013 届本科)论文题目:伴随矩阵的性质学院:数学与统计学院专业:数学与应用数学班级:09级本科1班作者姓名:魏瑞继指导教师:俱鹏岳职称:副教授完成日期:2013年 4 月20日目录陇东学院本科生毕业论文(设计)诚信声明 (4)摘要 (5)关键词 (5)0引言 (5)1主要结论 (6)1.1伴随矩阵的基本性质 (6)1.2伴随矩阵的特征值与特征向量的性质 (9)1.3矩阵与其伴随矩阵的关联性质 (10)1.4两伴随矩阵间的关系性质 (11)2应用举例 (12)例1 (12)例2 (12)结束语 (13)参考文献 (13)致谢 (14)陇东学院本科生毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

作者签名:二〇一二年十二月二十日伴随矩阵的性质魏瑞继(陇东学院 数学与统计学院 甘肃 庆阳 745000)摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵0引言伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广.定义1[1] 设矩阵()ij n n A a ⨯=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即ij A = (1)i j ij M +-(i ,j=1,2,……,n).定义2[2] 方阵()ij n n A a ⨯=的各元素的代数余子式ij A 所构成的如下矩阵A *= 112111222212n n n n nn A A A A A A A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L M M O M M 称为矩阵A 的伴随矩阵.1主要结论1.1伴随矩阵的基本性质性质1 若A 是n 阶方阵(2)n ≥,那么()r A *= (A)1(A)10(A)1n r n r n r n ⇔=⎧⎪⇔=-⎨⎪⇔<-⎩.证明 (1)⇒)设()r A n *=,设()r A n <,则0A =,AA A E *=0= 由()r A n *=知A *为可逆矩阵,从而推得0A =,即A 为零矩阵. 于是A *也为零矩阵,与()r A n *=矛盾,所以()r A n =;(2) ⇒)如果()1r A *=,则A *中至少有一个元素ij A ≠0,即A 中至少有一个1n - 阶子式不为0,故()1r A n ≥-. 而r(A *) =1<n ,所以()1r A n =-;(3) ⇒)如果()0r A *=,即A *为零矩阵,而A *中元素均为A 中的1n -阶代数余子式,从而A 中的所有1n -阶子式全为0,所以()1r A n <-;性质2[4] 若矩阵A 为非奇异阵,k 为常数(k ≠0),则1()n kA k A *-*=. 证明 由A *=1A A -及111()kA A k--=可得 111()()n kA kA kA k A A k*--==⋅=111n n k A A k A ---*=.性质3 (1)无论A 是奇异阵还是非奇异阵,等式1n A A -*= (2n ≥)成立[5];(2)设A 为n 阶方阵,则2()n A AA -**=[6].证明 (1)当A 是奇异阵时,0A =,因为A *=1A A -0=为零阵. 所以 10A A A *-==,从而等式1n A A-*= (2n ≥)成立.当A 是非奇异阵时,0A *≠,由AA A E *=得nA A A E A *==. 所以 1n A A-*=(2n ≥).(2)当A ≠0时,()A **=111()()n A A AA --*-*==121()n n AA A AA ---=.当A =0时,知()1r A n ≤-,若()1r A n =-,则()11r A n *=<-. 由性质1知r (()A **)=0,从而()A **=0=2n A A -若()1r A n <-,则r(A *)=0,即A *=0 故()A **=0=2n AA -.性质4 设A ,B 为n 阶方阵,则()AB B A ***=. 证明 (1)当0A ≠,B ≠0时,由A *=1A A -可得()AB *=11111()AB AB A B B A B B A A B A -----**===. (2)当0A =,B =0时,令()A x xE A =+,()B x xE B =+只要x 充分大,()A x ,()B x 都可逆,所以(()())(())(())A x B x B x A x ***=上式两端矩阵中的元素都是关于x 的多项式,由于两端对应元素相等,所以对应元素是相等的多项式,即上式对任意的x 都成立. 特别的取x =0,即得()AB B A ***=. 推论 设12,,,s A A A L 均为n 阶方阵,则 1221()s s A A A A A A ****=L L .性质5 设A ,B 均为n 阶可逆矩阵,则有220(1)A B 0A 0(1)A 0n n B B ***⎡⎤-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦⎣⎦. 证明 因为-1-10A 0B 0A0B ⎡⎤⎡⎤⋅⎢⎥⎢⎥⎣⎦⎣⎦=-1-1AA 00B B ⎡⎤⎢⎥⎣⎦=00nn E E ⎡⎤⎢⎥⎣⎦=2n E 所以0A 0B ⎡⎤⎢⎥⎣⎦可逆,且-10A 0B ⎡⎤⎢⎥⎣⎦=-1-10B A 0⎡⎤⎢⎥⎣⎦. 又有220A 0=(1)=(1)A 0Ann B B B--由-1A =A A *可得0A 0B *⎡⎤⎢⎥⎣⎦=-10A 0A 00B B ⎡⎤⋅⎢⎥⎣⎦=2-1-10B (1)A A 0n B ⎡⎤-⎢⎥⎣⎦=22-1-10(1)A B (1)A A 0n n B B ⎡⎤-⎢⎥⎢⎥-⎣⎦=220(1)A B (1)A 0n n B **⎡⎤-⎢⎥⎢⎥-⎣⎦ .推论 设A ,B ,C 均为n 阶可逆矩阵,则有22200(1)A C 0A 000(1)A C B 000(1)C A 00n n n B B C B ****⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. 性质6[4] 若A 为n 阶方阵,则()()T T A A **=.证明 (1)当A 为非奇异矩阵时,有A ≠0,T A =A ≠0,10n A A -*=≠即T A ,A *也为非奇异阵.由A *=1A A -可得11()()()T T T A A A A A *--== 又 11(A )=A (A )=A (A )T T T T *--因为11A (A )=A A =T T TT E E --=()所以1(A )T -=1A T -() 即(A )T *=A T*().(2)当A 为奇异阵时,设A = 111212122212n n n n nn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L M M O M L,则T A 的第i 行第j 列元素为ija ,()T A *的第i 行第j 列元素为ij A ,A *的第i 行第j 列元素为ji A ,()T A *的第i 行第j 列元素为 ij A (i ,j=1,2,……,n ), 所以()T A *= ()T A *.性质7 (1)设A 是n 阶非奇异阵,则111()()A A A A-**-==; (2)设A 是n 阶非奇异阵,则111()()T T T A A A A*--*⎡⎤⎡⎤==⎣⎦⎣⎦. 证明 (1)由A *= 1A A -得 1111111()()()A A A A A A A*-----===又11111()()A A A A A-*---==所以11()()A A -**-= =1A A. (2)由性质6得11()()TT A A *--*⎡⎤⎡⎤=⎣⎦⎣⎦ 由(1)得11()()TTA A -**-⎡⎤⎡⎤=⎣⎦⎣⎦.又因为11()()T T T T A A A A E E --===, 所以11()()T T A A --=11()()TT A A -*-*⎡⎤⎡⎤=⎣⎦⎣⎦即1-1()()T TA A *-*⎡⎤⎡⎤=⎣⎦⎣⎦又11111111()()()()T T T T T A A A A A A A*-------⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦ 所以111()()T T T A A A A*--*⎡⎤⎡⎤==⎣⎦⎣⎦. 1.2伴随矩阵的特征值与特征向量的性质性质8 若A 是可逆矩阵,λ是其特征值,α是A 的属于特征值λ的特征向量,则 A *的特征值为Aλ,α是A *的属于特征值Aλ的特征向量.证明 因为A 是可逆矩阵,所以λ≠0,在A αλα=两边左乘A *得 A A A αλα**= 即 A A A αλα**=.又AA A E *=, 所以 A E A αλα*= 即1AA A E αλααλ*-==.所以Aλ为A *的特征值,α是A *的属于特征值Aλ的特征向量.性质9 设A 是不可逆矩阵,若λ是A 的非零特征值,α是A 的属于λ的特征向量, 则α是A *的属于特征值0的特征向量.证明 由条件可知A αλα=(λ≠0),两边左乘A *得 A A A αλα**= 即A E A αλα*=.由于A =0,λ≠0,所以0A αα*=⋅ 即α是A *的属于特征值0的特征向量.推论 设A 是不可逆矩阵,若λ是A *的非零特征值,α是A *的属于λ的特征向量, 则α是A 的属于特征值0的特征向量. 1.3矩阵与其伴随矩阵的关联性质性质10[7] (1)若A 是n 阶对称矩阵,那么A *也是n 阶对称矩阵;(2)若A 是n 阶反对称矩阵,那么当n 是偶数时,A *也是n 阶反对称矩阵;当n 是奇数时,A *是n 阶对称矩阵.证明 (1)因为A 是n 阶对称矩阵,所以T A =A . 又()()T T A A A ***==,所以A *是n 阶对称矩阵. (2)因为A 是n 阶反对称矩阵,所以T A =A -. 又1()()()(1)T T n A A A A ***-*==-=-当n 是偶数时,有1(1)n A A -**-=-,所以A *也是n 阶反对称矩阵; 当n 是奇数时,有1(1)n A A -**-=,即()T A A **=,所以A *是n 阶对称矩阵. 性质11[8] 若A 是n 阶正定矩阵,则A *也是n 阶正定矩阵 . 证明 若A 正定,则A 为对称矩阵,由性质10知A *也为对称矩阵. 其次可得A 的所有特征值λ均大于0,由性质8知A *的所有特征值也大于0,即A *为正定矩阵. 性质12[9] 若A 是正交矩阵,则A *也是正交矩阵 . 证明 设A 是正交矩阵,则有T T A A AA E == 又A *()T A *= 1()()T T A A A A E E E E ****-==== 所以A *也是正交矩阵.性质13 若A 是上(下)三角矩阵,则A *也是上(下)三角矩阵.证明 设A =()ij a 是上三角矩阵,则当i>j 时,有ij a =0.当i<j 时,ij a 的余子式ij M 为n-1阶的三角行列式,且主对角线上的元素至少有一个为零,所以ij M =0(i<j),即有ij A =0(i<j).故A *也为上三角矩阵.同理可证,若A 是下三角矩阵,则A *也为下三角矩阵.推论 当A 是对角矩阵时,A *也是对角矩阵.1.4两伴随矩阵间的关系性质性质14 若方阵A 等价于B ,则A *等价于B * .证明 因为A 等价于B ,则存在可逆矩阵P ,Q 使得PAQ B =两边取伴随矩阵得()PAQ B **=即有Q A P B ****=.因为P ,Q 可逆,所以P *,Q *也可逆,因此A *等价于B *.性质15[10] 若A 与B 相似,则A *与B *也相似.证明 当A 可逆时,因为A 与B 相似,则存在可逆矩阵P ,使得1P AP -=B . 两边取行列式得A B =,所以B 也可逆,即111P A P B ---=. 上式两边分别乘以,A B 得111P A A P B B ---=.即1P A P B -**=,所以A *与B *相似.性质16 若A 与B 合同,且A 与B 可逆,则A *与B *也合同.证明 因为A 与B 合同,所以存在可逆矩阵P ,使得T P AP B =. 又A 与B 可逆,上式两边取逆,得 1111()T P A P B ----=即1111()T P A P B ----=.令1()T P -=C ,则1T P C -=,所以11T C A C B --=.又由1111()T P A P B ----=得 2P A B ⋅= 所以211T P A C A C B B --⋅= 即()()T P C A P C B **⋅=.令Q=P C ,则T Q A Q B **=所以A *与B *合同. 2应用举例例1 设A 、B 、C 均为3阶可逆矩阵,且A =3,B =2,C =5A *=110012009-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B *=400110211⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,C *=500050001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求000000A B C *⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 解 由性质5的推论可得00000A B C*⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=99900(1)3(2)0(1)350(1)(2)500C B A ***⎡⎤-⋅⋅-⎢⎥-⋅⋅⎢⎥⎢⎥-⋅-⋅⎣⎦=00601501000C B A ***⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=0000003000000000030000000000600060000000001515000000030151500010100000000010200000000090000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥--⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦. 例2 设A =100130225012⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,A *是A 的伴随矩阵,求1()T A -*⎡⎤⎣⎦.解 因A =10013022512=14-≠0,所以A 可逆由性质7可得 11()T T A A A -*⎡⎤==⎣⎦10040014010242061035022⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦ .结束语这篇论文在伴随矩阵的基本性质的基础上,较为详细地归纳并讨论了伴随矩阵的性质,尤其是将矩阵与其伴随矩阵的秩之间的关系做成了充要条件,并给出了相应的证明,而关于伴随矩阵秩的其它性质还很多,限于篇幅,在此就不一一赘述.但我的学识有限,所做工作仍有许多不足之处.参考文献[1]李明.伴随矩阵秩的研究[J].陕西理工学院学报,2008.6.7-8.[2]张禾瑞,郝鈵新.高等代数[M].北京:高等教育出版社,2007.6. 第五版.[3]张禾瑞.高等代数同步辅导及习题全解[M].徐州:中国矿业大学出版社,2008.4.[4]陈艳凌,许杰.矩阵A 的伴随矩阵A *的性质[J].齐齐哈尔师范高等专科学校学报,2007年第2期, 2007.2.151-153.[5]肖翔,许伯生.伴随矩阵的性质[J].上海工程技术大学教育研究,2007.3.52-53.[6]郑群珍,封平华.伴随矩阵的性质及应用研究[J].河南教育学院学报(自然科学版),第20卷第3期,2011.9.13-14.[7]王航平.伴随矩阵的若干性质[J].中国计量学院学报,2004.3.246-247.[8]朱焕,关丽杰,范慧玲.有关伴随矩阵的性质[J].高师理科学刊,第28卷第3期,2008.5.22-23.[9]任化民.伴随矩阵的性质[J].工科数学,第14 卷第1期,1998.2.155-157.[10]孙红伟.伴随矩阵性质的探讨[J].高等函授学报(自然科学版),第20卷第3期,2006.6.37-38.The properties of adjoint matrixWEI Ruiji(School of Mathematics and Statistics,Longdong University Gansu Qingyang 745000)Abstract: Adjoint matrix is an important basic concepts in matrix theory, we studied the several classes of adjoint matrix of the matrix,obtain some valuable conclusions and give some applied examples.Key words:Adjoint matrix; Partitioned matrix; Orthogonal matrix; Similar matrix致谢我的论文是在我的指导老师俱鹏岳副教授悉心指导下完成的,在论文的选题、资料查询及定稿过程中,给予我无私的帮助和悉心的指导,他的教诲将使我终身受益.。

相关主题