第1章 EDA技术随着大规模集成电路技术和计算机技术的不断发展,在涉及通信、国防、航天、医学、工业自动化、计算机应用、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升,电子类高新技术项目的开发也更加依赖于EDA技术的应用。
即使是普通的电子产品的开发,EDA技术常常使一些原来的技术瓶颈得以轻松突破,从而使产品的开发周期大为缩短、性能价格比大幅提高。
不言而喻,EDA技术将迅速成为电子设计领域中的极其重要的组成部分。
1.1 EDA技术的含义及特点EDA(Electronic Design Automation,电子系统设计自动化)技术是20世纪90年代初从CAD(计算机辅助设计),CAM(计算机辅助制造),CAT (计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
现代EDA 技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,能自动地完成用软件方式描述的电子系统到硬件系统的逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化、布局布线、逻辑仿真,直至完成对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。
设计者的工作仅限于利用软件的方式来完成对系统硬件功能的描述,在EDA工具的帮助下和应用相应的FPGA/CPLD器件,就可以得到最后的设计结果。
尽管目标系统是硬件,但整个设计和修改过程如同完成软件设计一样方便和高效。
[3]可见,利用EDA技术进行电子系统的设计具有以下几个特点:一是用软件的方式设计硬件;二是用软件方式设计的系统到硬件系统的转换是由有关的开发软件自动完成的;三是采用自顶向下(top--down)的设计方法;四是设计过程中可用有关软件进行各种仿真;五是系统可现场编程,在线升级;六是整个系统可集成在一个芯片上,体积小、功耗低、可靠性高。
因此,EDA代表了当今电子设计技术的最新发展方向。
1.2EDA技术的主要内容EDA技术涉及面很广,内容丰富,从教学和实用的角度看,主要应掌握如下个4个方面的内容:一是大规模可编程逻辑器件;二是硬件描述语言;三是软件开发工具;四是实验开发系统。
其中,大规模可编程逻辑器件是利用EDA 技术进行电子系统设计的载体,硬件描述语言是利用EDA技术进行电子系统设计的主要表达手段,软件开发工具是利用EDA技术进行电子系统设计的智能化的自动设计工具,实验开发系统则是利用EDA技术进行电子系统设计的下载工具及硬件验证工具。
1.3 FPGA、VHDL语言FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA采用了逻辑单元阵列(LOA,Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块(CLB,Configurable Logic Block)、输入输出模块(IOB,Input Output Block)和内部连线(Interconnect)三个部分。
FPGA的基本特点主要有:(1)采用FPGA设计ASIC电路,用户不需要投片生产就能得到合用的芯片;(2)FPGA可做其他全定制或半定制ASIC电路的试样片:(3)FPGA内部有丰富的触发器和I/O引脚;(4)FPGA是ASIC电路中设计周期最短、开发费用最低、风险最小的器件之一;(5)FPGA采用高速CMOS工艺,功耗低,可以与CMOS、TTL电平兼容。
可以说,FPGA芯片是小批量系统提高系统集成度和可靠性的最佳选择之一。
目前FPGA的品种很多,有XILINX的xc系列、TI公司的TPC系列、ALTERA 公司的FIEX系列等。
VHDL于1983年有美国国防部(DOD)发起创建,由IEEE进一步发展并在1987年作为“IEEE标准1076”发布。
从此,VHDL成为硬件描述语言的业界标准之一。
VHDL作为一个规范语言和建模语言,随着VHDL的标准化,出现了一些支持该语言的行为仿真器。
由于创建VHDL的最初目标是用于标准文档的建立和电路功能模拟,其基本想法是在高层次上描述系统和元件的行为。
但到了20世纪90年代初,人们发现,VHDL不仅可以作为系统模拟的建模工具,而且可以作为电路系统的设计工具,可以利用软件工具将VHDL源码自动地转化为文本方式表达的基本逻辑元件连接图,即网表文件。
这种方法显然对于电路自动设计师一个极大的推进。
很快,电子设计领域出现了第一个软件设计工具,即VHDL逻辑综合器,它把标准VHDL的部分语句描述转化为具体电路实现的网表文件。
VHDL具有与具体硬件电路无关和与设计平台无关的特性,并且具有良好的电路行为描述和系统描述的能力,在语言易读性和层次化结构化设计方面表现了强大的生命力和应用潜力。
因此,VHDL支持各种模式的设计方法:自顶向下雨自底向上或混合方法,在面对当今许多电子产品生命周期缩短,需要多次重新设计以融入最新技术、改变工艺等方面,VHDL具有良好的适应性。
用VHDL进行电子系统设计的一个很大的优点神设计者可以专心致力于其功能的实现,而不需要对不影响功能的与工艺有关的因素花费过多的时间和精力。
1.4 Quartus II软件介绍Quartus II应用开发工具提供完整的多平台设计环境,它可以轻易满足特定设计的需要,是可编程片上系统(SOPC)设计的综合性环境。
Quartus II可在个人计算机或Unix/Linus工作站上使用,大大简便了整个设计过程,做到真正的快速CPLD/FPGA应用开发。
与早期的MAX+plus II开发工具相比,Quartus II 提供更为广泛的器件支持库、更高的编译效率、更好的图形界面和更为便捷的仿真平台。
Quartus II全面支持Altera公司出品的芯片产品,就4.0版本而言,它支持的芯片型号包括ACEX 1K、APEX全系列、APEX II、基于ARM技术的Excalibur系列、Cyclone、FLEX全系列、HardCopy Stratix、MAX II、MAX全系列、Mercury、Stratix、Stratix II以及Stratix GX等。
Quartus II为电路设计者提供了完整的多平台设计环境,它可以满足众多特定设计的需要。
Quartus II拥有CPLD/FPGA各个开发阶段对应的开发工具,设计者通过它的集成开发环境可一次性完成整体应用的开发。
图1.1所示是利用Quartus II完成应用开发的流程图。
图1.1 Quartus II设计流程第2章电梯控制系统2.1 设计背景与意义目前国内七八十年代安装的许多电梯电气部分用继电器接触器控制系统,线路复杂,接线多,故障率高,维修保养难,许多已处于闲置状态,其拽引系统多采用交流双速电机系统换速,效率低,调速性能指标较差,严重影响电梯运行质量。
由于这些电梯交流调压调速系统,交流双速电机拖动系统性能及乘坐舒适感较差,交流调压调速系统属能耗型调速的机械部分无大问题,为节约资金,大部分老式电梯用户希望对电梯的电气控制系统进行改造,提高电梯的运行性能。
因此对电梯控制技术进行研究,寻找适合我国老式电梯的改造方法具有十分重要的意义。
电梯作为高层建筑物的重要交通工具与人们的工作和生活日益紧密联系。
FPGA/CPLD作为新一代工业控制器,以其高可靠性和技术先进性,在电梯控制中得到广泛应用,从而使电梯由传统的继电器控制方式发展为计算机控制的一个重要方向,成为当前电梯控制和技术改造的热点之一。
由于FPGA/CPLD具有性能稳定、抗干扰能力强、设计配置灵活等特点。
因此在工业控制方面得到了广泛应用。
自90年代后期FPGA/CPLD引入我国电梯行业以来,由FPGA/CPLD组成的电梯控制系统被许多电梯制造厂家普遍采用。
并形成了一系列的定型产品。
在传统继电器系统的改造工程中,FPGA/CPLD系统一直是主流控制系统。
电梯控制系统分为调速部分和逻辑控制部分。
调速部分的性能对电梯运行是乘客的舒适感有着重要影响,而逻辑控制部分则是电梯安全可靠运行的关键。
为了改善电梯的舒适感和运行的可靠性,现在都改为用FPGA/CPLD来控制电梯的运行,这样大大提高了电梯的性能。
2.2 设计要求采用FPGA设计一个10层的电梯控制系统,用VHDL语言进行程序设计,用Quartus II软件进行结果仿真。
该控制器可控制电梯完成10层楼的载客服务。
要求遵循方向优先原则,能响应提前关门或延迟关门,并具有超载报警和故障报警;同时指示电梯运行情况和电梯内外请求信息。
第3章电梯控制系统整体设计方案3.1 不同的方案设计3.1.1 基于单片机的电梯控制设计方案电梯控制系统的工作原理是:当某层有电梯信号输入时,电梯信号锁存系统将电梯信号锁存,待单片机查询到电梯信号后,根据电梯信号的位置(即楼层数)和电梯所处的位置,决定电梯运行方向,并启动电梯到电梯层停梯、开门,待乘客进入电梯关门后,再根据乘客要求把乘客送到目的层。
用单片机实现电梯控制系统的结构原理框图如图3.1所示。
[9]图3.1 单片机电梯控制系统的方框图3.1.2 基于PLC的电梯控制设计方案电梯PLC的控制系统和其他类型的电梯控制系统一样主要由控制系统和拖动控制系统两部分组成。
其基本结构图如图3.2所示,主要硬件包括主机及扩展、机械系统、轿厢操纵盘、厅外呼梯盘、指层器、门机、调速装置与主拖动系统等。
图3.2 PLC电梯控制系统的基本结构图3.1.3 基于FPGA的电梯控制设计方案该设计采用方向优先控制方式方案,并能响应提前关门延时关门,并具有超载报警和故障报警;同时指示电梯运行情况和电梯内外请求信息。
它主要由4个模块组成:外部数据高速采集模块、信号存储模块、基于FPGA的控制器模块、信号的输出、显示模块。
3.2 方案比较与选择采用单片机的电梯控制系统是以MCS-51系列单片机为控制核心与可编程接口芯片和采用串入并出移位寄存器的显示驱动电路及带有比较器的信号输入滤波电路构造的一个主控板并利用软件手段实现对电梯运行的逻辑控制。
结构简单,运行可靠,耗电量少且便于维修,具有造价低廉,维修方便之特点,但没FPGA控制方便灵活。
采用PLC的电梯控制系统是一种用于自动化控制的专用计算机,实质上属于计算机控制方式。
PLC控制一般具有可靠高、易操作、维修、编程简单、灵活性强等特点。
在设计中要使用到变频器,其功能强,使用灵活,由于PLC的针对性较强,每一台PLC都是根据一个设备而设计的,且使用到继电器,所以价格较昂贵,操作复杂。
采用FPGA的电梯控制系统通过对器件内部的设计来实现系统功能,是一种基于芯片的设计方法。