1.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成600角。
现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为A .12t ∆ B .2t ∆ C .13t ∆ D .3t ∆ 2.半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。
圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。
杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。
则A .θ=0时,杆产生的电动势为2BavB .3πθ=3BavC .θ=0时,杆受的安培力大小为203(2)R B av π+ D .3πθ=时,杆受的安培力大小为203(53)R B av π+3.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷最分别为q A 和q B ,用绝缘细线悬挂在天花板上。
平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。
两小球突然失去各自所带电荷后开始摆动,最大速度分别v A 和v B ,最大动能分别为E kA 和E kB 。
则 ( )(A )m A 一定小于m B(B )q A 一定大于q B (C )v A 一定大于v B (D )E kA 一定大于E kB4.如图,理想变压器原、副线圈匝数比为20∶1,两个标有“12V ,6W ”的小灯泡并联在副线圈的两端。
当两灯泡都正常工作时,原线圈中电压表和电流表(可视为理想的)的示数分别是A .120V ,0.10AB .240V ,0.025AC .120V ,0.05AD .240V ,0.05A5.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。
现使线框保持图中所示位置,磁感应强度大小随时间线性变化。
为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率tB ∆∆的大小应为A.πω04B B.πω02B C.πω0B D.πω20B6.如图所示直角坐标系xoy 中,矩形区域oabc 内有垂直于纸面向外的匀强磁场,磁感应强度大小为B=5.0×10-2T ;第一象限内有沿y -方向的匀强电场,电场强度大小为5100.1⨯=E N/C 。
已知矩形区域Oa 边长为0.60m ,ab 边长为0.20m 。
在bc 边中点N 处有一放射源,某时刻,放射源沿纸面向磁场中各方向均匀地辐射出速率均为6100.1⨯=v m/s 的某种带正电粒子,带电粒子质量27106.1-⨯=m kg ,电荷量19102.3-⨯=q C ,不计粒子重力,求:(计算结果保留两位有效数字)(1)粒子在磁场中运动的半径;(2)从x 轴上射出的粒子中,在磁场中运动的最短路程为多少?(3)放射源沿-x 方向射出的粒子,从射出到从y 轴离开所用的时间。
7.如图所示,相距为L的两条足够长光滑平行金属导轨固定在水平面上,导轨由两种材料组成。
PG右侧部分单位长度电阻为r0,且PQ=QH=GH=L。
PG左侧导轨与导体棒电阻均不计。
整个导轨处于匀强磁场中,磁场方向垂直于导轨平面向下,磁感应强度为B。
质量为m的导体棒AC在恒力F作用下从静止开始运动,在到达PG之前导体棒AC已经匀速。
(1)求当导体棒匀速运动时回路中的电流;(2)若导体棒运动到PQ中点时速度大小为v1,试计算此时导体棒加速度;(3)若导体棒初始位置与PG相距为d,运动到QH位置时速度大小为v2,试计算整个过程回路中产生的焦耳热。
8.(12分)如图所示,在匀强电场中,有A、B两点,它们间距为2cm ,两点的连线与场强方向成60°角。
将一个不知道电荷性质,电量为2×10-5C的电荷由A移到B,其电势能增加了0.2J。
求:(1)判断电荷带正电还是负电?由A到B电场力做的功W AB?(2)A、B两点的电势差U AB为多少?(3)匀强电场的场强的大小?9.(18分)如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q 两点,NS和MT间距为1.8h.质量为m、带电量为q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求该电场强度的大小和方向。
(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值。
(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值。
10.在如图所示的直角坐标系中,x轴的上方存在与x轴正方向成45°角斜向右下方的匀强电场,场强的大小为E=×104 V/m.x轴的下方有垂直于xOy面向外的匀强磁场,磁感应强度的大小为B=2×10-2T.把一个比荷为qm=2×108C/kg的正电荷从坐标为(0,1)的A点处由静止释放.电荷所受的重力忽略不计.(1)求电荷从释放到第一次进入磁场时所用的时间;(2)求电荷在磁场中做圆周运动的半径;(保留两位有效数字)(3)当电荷第二次到达x轴时,电场立即反向,而场强大小不变,试确定电荷到达y轴时的位置坐标.11.(20分)如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。
空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。
匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为mgEq=,g为重力加速度。
(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离。
12.如图所示,一根长为l的细绝缘线,上端固定,下端系一个质量为m的带电小球,将整个装置放入一匀强电场,电场强度大小为E,方向水平向右,已知:当细线偏离竖直方向为θ=370时,小球处于平衡状态,(sin370=0.6)试求:(1)小球带何种电荷,带电量为多少;(2)如果将细线剪断,小球经时间t发生的位移大小;(3)若将小球拉至最低点无初速释放,当小球运动到图示位置时受到线的拉力的大小。
13.如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限内存在沿y轴正方向的匀强电场和垂直于xOy平面向里的匀强磁场,在第四象限内存在沿y轴负方向、场强大小与第三象限电场强度相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰能做匀速圆周运动,之后经过y轴上y=-2h处的P3点进入第四象限.试求:(1)第三象限空间中电场强度和磁感应强度的大小.(2)带电质点在第四象限空间运动过程中的最小速度.14.(18分)如图所示,在直角坐标系xoy 平面的第II 象限内有半径为R 的圆1O 分别与x 轴、y 轴相切于C (R -,0)、D (0,R )两点,圆1O 内存在垂直于xoy 平面向外的匀强磁场,磁感应强度B .与y 轴平行且指向负方向的匀强电场左边界与y 轴重合,右边界交x 轴于G 点,一带正电的粒子A (重力不计)电荷量为q 、质量为m ,以某一速率垂直于x 轴从C 点射入磁场,经磁场偏转恰好从D 点进入电场,最后从G 点以与x 轴正向夹角45°的方向射出电场.求:(1)OG 之间距离;(2)该匀强电场电场强度E ;(3)若另有一个与A 的质量和电荷量相同、速率也相同的正粒子A ',从C 点沿与x 轴负方向成30°角的方向射入磁场,则粒子A '再次回到x 轴上某点时,该点坐标值为多少?参考答案【答案】B【解析】由牛顿第二定律2v qvB m r =及匀速圆周运动2rT vπ=得:mv r qB =;2m T qB π=。
作出粒子的运动轨迹图,由图可得以速度v 从A 点沿直径AOB 方向射入磁场经过Δt=T/6从C 点射出磁场,轨道半径3r AO =;速度变为v/3时,运动半径是r/3=3/3AO ,由几何关系可得在磁场中运动转过的圆心角为1200,运动时间为T/3,即2Δt 。
A 、C 、D 项错误; B 项正确。
【答案】AD【解析】杆的有效切割长度随角度变化关系为θcos 2a L =由法拉第电磁感应定律可知A 答案显然正确,B 错误;此时导体棒是电源,而两圆弧并联后作为外电路,由全电路欧姆定律通过计算可知答案D 正确,选AD 3.ACD【解析】分别对A 、B 进行受力分析,如图所示两球间的库仑斥力是作用力与反作用力总是大小相等,与带电量的大小无关,因此B 选项不对,对于A 球:1sin A T F θ= 1cos A A T M g θ= 对于B 球:2sin B T F θ= 2cos B B T M g θ=联立得:F=12tan tan A B M g M g θθ= 又θ1>θ2可以得出:m A <m B A 选项正确 在两球下摆的过程中根据机械能守恒:211(1cos )2A A A AM gL M v θ-=可得:12(1cos )A A v gL θ=-221(1cos )2B B B BM gL M v θ-=可得:B v =开始A 、B 两球在同一水平面上,12cos cos A B L L θθ= 由于θ1>θ2可以得出:L A >L B这样代入后可知:A B v v > C 选项正确 A 到达最低点的动能:2111111111cos 1(1cos )(1cos )cos cos tan 2tan sin 2A A A A A A A F M v M gL L FL FL θθθθθθθθ-=-=-==B 到达最低点的动能:2222222221cos 1(1cos )(1cos )cos cos tan 2tan sin 2B B B B B B B F M v M gL L FL FL θθθθθθθθ-=-=-==由于θ1>θ2可知,12tantan22θθ>又:12cos cos A B L L θθ=可得:221122A AB BM v M v >因此D 选项也正确。