当前位置:文档之家› 液压伺服控制系统第7章电液伺服阀PPT课件

液压伺服控制系统第7章电液伺服阀PPT课件


永 磁 动 铁 式 力 矩 马 达 的 工 作 原 理
力 矩 马 达 磁 路 原 理 图
三、 永磁动圈式 力马达
图示为永磁动式 力马达的结构原理。 力马达的可动线圈 悬置于作气隙中, 永久磁铁在工作气 隙中形成极化磁通, 当控制电流加到线 圈上时,线圈就会 受到电磁力的作用
而运动。
四、动铁式力矩马达与动圈式力矩马达的比较
比例环节。
两级伺服阀 此类阀克服了单级伺服阀缺点,是最常用的型 式。
三级伺服阀 此类阀通常是由一个两级伺服阀作前置级控制 第三级功率滑阀.功率级滑阀阀芯位移通过电气反馈形成闭环 控制,实现功率级滑阀阀芯的定位。三级伺服阀通常只用在大 流量的场合。
按第一级阀的结构形式分类: 可分为:滑阀、单喷嘴挡板阀、双喷嘴挡板阀 射流管阀和偏 转板射流阀。
伺服阀系统方块图
三、力反馈伺服阀的传递函数
给出的传递函数是一个惯性加振荡的环节,重点介绍 近似的传递函数:在大多数电液伺服系统中,伺服阀 的动态响应往往高于动力元件的动态响应。为了简化 系统的动态持性分析与设计,伺服阀的传递函数可以 进一步简化,一般可用二阶振荡环节表示。如果伺服 阀二阶环节的固有频率高于动力元件的固有频率,伺 服阀传递函数还可用一阶惯性环节表示,当伺服阀的 固有频率远大于动力元件的固有频率,伺服阀可看成
4)减小工作气隙的长度可提高动圈式力马达和动铁式力矩马达 的灵敏度。但动圈式力马达受动圈尺寸的限制,而动铁式力 矩马达受静不稳定的限制。
5)在相同功率情况下,动圈式力马达比动铁式力矩马达体积大, 但动圈式力马达的造价低。
7.3 力反馈两级伺服阀
一、工作原理
无控制电流时,衔铁由弹簧管支承在上、下导磁体的中间位 置,挡板也处于两个喷嘴的中间位置,滑阀阀芯在反馈杆小球 的约束下处于中位,阀无液压输出。当有差动控制电流输入 时.在衔铁上产生逆时针方向的电磁力矩,使衔铁挡板组件绕 弹簧转动中心逆时针方向偏转,弹簧管和反馈杆产生变形,挡 板偏离中位。这时,喷嘴挡板阀右间隙减小而左间隙增大,引 起滑阀左腔控制压力增大,右腔控制压力减小,推动滑阀阀芯 左移。同时带动反馈杆端部小球左移,使反馈杆进一步变形。 当反馈杆和弹簧管变形产生的反力矩与电磁力矩相平衡时,衔 铁挡板组件便处于一个平衡位旨。在反馈杆端部左移进一步变 形时,使挡板的偏移减小,趋于中位。这使左腔控制压力又降 低,右腔控制压力增高,当阀芯两端的液压力与反馈杆变形对 阀芯产生的反作用力以及滑阎的液动力相平衡时,阀芯停止运 动,其位移与控制电流成比例。在负载压差—定时,阀的输出 流量也与控制电流成比例。所以这是一种流量控制伺服阀。
按反馈形式分类: 可分为滑阀位置反嫂、负载流量反馈和负载压力反馈三种。
按力矩马达是否浸泡在油中分类: 湿式的可使力矩马达受到油液的冷却,但油液中存在的铁污物 使力短马达持性变坏,干式的则可使力矩马达不受油液污染的影 响,目前的伺服阀都采用干式的。
双喷嘴挡板力反馈电液伺服阀
1—阀体 2—固定节流孔
3—第二级滑阀阀芯
7.1 电液伺服阀组成与分类
一、电液伺服阀的组成 电液伺服阀通常由力矩马达(或力马达)、液压放大器、 反馈机构(或平衡机构)三部分组成。
二、电液伺服阀的分类 按液压放大级数分为: 单级伺服阀 此类阀结构简单、价格低廉,但由于力矩马达 或力马达输出力矩或力小、定位刚度低,使阀的输出流量有限, 对负裁动态变化敏感,阀的稳定性在很大程度上取决于负载动 态,容易产生不稳定状态。只适用于低压、小流量和负载动态 变化不大的场合。
1)动铁式力矩马达因磁滞影响而引起的输出位移滞后比动圈式 力马达大。
2)动圈式力马达的线性范围比动铁式力矩马达宽。因此.动圈 式力马达的工作行程大,而动铁式力矩马达的工作行程小。
3)在同样的惯性下,动铁式力矩马达的输出力矩大,而动圈式 力马达的输出力小。动铁式力矩马达因输出力矩大,支承弹 簧刚度可以取得大,使衔铁组件的固有频率高,而力马达的 弹簧刚度小,动圈组件的固有频率低。
4—阀套
5—喷嘴与挡板
6—永磁体
Gsv(s) 17—衔铁 8—电磁线圈 9—力矩马达外壳 10—弹簧管 11—反馈弹簧 12—固定节流孔 13—滤清器
Rexroth
ห้องสมุดไป่ตู้
7.2 力矩马达
3)按极化磁场产生的方式可分为:非激磁式、 固定电流激磁和永磁式三种。
2、对力矩马达的要求 作为阀的驱动装置,对它提出以下要求; 1)能够产生足够的输出力和行程,问时体积
液压伺服系统
第7章 电液伺服阀
1
OUTLINE
电液伺服阀既是电液转换元件,又是功率放大元件。 它能够将输入的微小电气信号转换为大功率的液压信号(流 量与压力)输出。
根据输出液压信号的不同,电液伺服阀可分为电液流 量控制伺服阀和电液压力控制伺服阀两大类。
电液伺服阀控制精度高、响应速度快,是一种高性能 的电液控制元件,在液压伺服系统中得到了广泛的应用。
小、重量轻。 2)动态性能好、响应速度快。 3)直线件好、死区小、灵敏度高和磁滞小。 4)在某些使用情况下,还要求它抗振、抗冲
击、不受环境温度和压力等影响。
二、永磁力矩马达
1、力矩马达的工作原理 图2所示为一种常用的永磁动铁式力矩马达 工作原理图,它由永久磁铁、上导磁体、下导 磁体、衔铁、控制线圈、弹簧管等组成。衔铁 固定在弹簧管上端,由弹簧管支承在上、下导 磁体的中间位置,可绕弹簧管的转动中心作微 小的转动。衔铁两端与上、下导磁体(磁极)形 成四个工作气隙①、②、⑤、①。两个控制线 圈套在衔铁之上。上、下导磁体除作为磁极外, 还为永久磁铁产生的极化磁通和控制线圈产生 的控制磁通提供磁路。
1―喷嘴 2―喷嘴 3―固定节流孔 4―固 定节流孔 5―第二级滑阀阀芯 6―永磁 体 7―衔铁 8―电磁线圈 9―弹簧管 10―反馈弹簧
二、基本方程与方框图
力矩马达的运动方程包括基本电压方程,衔铁和挡板 组件的运动方程,挡板位移于转角之间的关系,喷嘴 挡板至滑阀的传递函数,阀控液压缸的传递函数,以 及作用在挡板上的压力反馈方程,根据这些方程可以 画出电液伺服阀的方框图。
相关主题