当前位置:文档之家› 华科大有限元分析题及大作业题答案——船海专业(DOC)

华科大有限元分析题及大作业题答案——船海专业(DOC)

(1)NDIV取5时的常应变三节点单元(单元数23)
图1-9(a)NDIV为5的网格划分及约束受载图
图1-9(b)NDIV为5的位移分布图
图1-9(c)NDIV为5的应力分布图
(2)NDIV为10的常应变三节点单元(单元数80)
图1-10(a)NDIV为10的网格划分及约束受载图
图1-10(b)NDIV为10的位移分布图
姓名:
学号:
班级:
有限元分析及应用作业报告
一、问题描述
图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:
1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;
2)分别采用不同数量的三节点常应变单元计算;
3)定义材料参数
4)生成几何模
a. 生成特征点
b.生成坝体截面
5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。
6)模型施加约束:
约束采用的是对底面BC全约束。
大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在LAB上,方向水平向右,载荷大小沿LAB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为:
(Hale Waihona Puke )其中ρ为水的密度,取g为9.8m/s2,可知Pmax为98000N,Pmin为0。施加载荷时只需对LAB插入预先设置的载荷函数(1)即可。
网格划分及约束受载情况如图1-3(a)和1-4(a)所示。
7)分析计算
8)结果显示
四、计算结果及结果分析
4.1计算结果
(1)三节点常应变单元(4 node 42)
(2)结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
(3)根据结果显示,最小三节点和六节点单元分析出来的最小应力值相差极为悬殊,结合理论分析,实际上A点不承受载荷,最小应力接近于零,显然六节点三角形单元分析在这一点上更准确。
(4)六节点的应力范围较大,所以可判断在单元数目相同的前提下,节点数目越多,分析精度就越大;但是节点数目的增多会不可避免地带来计算工作量增加和计算效率降低的问题。
表1-2不同单元数目下计算数据表
序号
NDIV
单元数
最大位移(mm)
最小应力(Pa)
最大应力(Pa)
1
5
23
0.022
31521
230283
2
10
80
0.0272
15760
336028
3
50
1850
0.0312
3152
604142
(4)结果分析
由以上分析结果可知:
(1)随着单元数目的增加,最大位移变化不大,应力变化范围逐步增大;
图1-3(a)常应变三节点单元的网格划分及约束受载图
图1-3(b)常应变三节点单元的位移分布图
图1-3(c) 常应变三节点单元的应力分布图
(2)六节点三角形单元
图1-4(a)六节点三角形单元网格划分及约束受载图
图1-4(b) 六节点三角形单元的变形分布图
图1-4(c)六节点三角形单元的应力分布图
根据以上位移和应力图,可以得出常应变三节点单元和六节点三角形单元的最小最大位移应力如表1-1所示。
五、第2问的有限元建模及计算结果
此次分析选择的单元类型为常应变三节点单元。选用三种不同单元数目情况进行比较分析。具体做法如下:有限元建模步骤与第1小题类似,只是在划分网格时,依次设置NDIV值为5,10,50,所获得的单元数目依次为23(图1-9(a))、80(图1-10(a))、1850(图1-11(a));分别计算并得到位移变化图如图1-9(b)、1-10(b)、1-11(c)所示;分别计算并得到应力变化云图如图1-9(c)、1-10(c)、1-11(c)所示。
表1-1计算数据表
单元类型
最小位移(mm)
最大位移(mm)
最小应力(Pa)
最大应力(Pa)
常应变三节点单元
0
0.029
11468
348696
六节点三角形单元
0
0.0315
0.11988
538035
4.2 结果分析
由以上各图和数据表可知,采用三节点和六节点的三角形单元分析计算:
(1)最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;
假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3
三、第
本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。
1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural
2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
3)当选常应变三角单元时,分别采用不同划分方案计算。
二、几何建模与分析
图1-2力学模型
由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。
图1-10(c)NDIV为10的应力分布图
(3)NDIV为50的常应变三节点单元(单元数1850)
图1-11(a)NDIV为50的网格划分及约束受载图
图1-11(b)NDIV为50的位移分布图
图1-11(c)NDIV为50的应力分布图
由以上不同单元数目的位移应力分布图可以看出,大坝截面所受位移和应力的变化趋势是相同的,最大应力都发生在坝底和水的交界点附近,最小应力发生在大坝顶端;最大变形位移也是发生在坝顶。不同单元数目下计算的数据如表1-2所示。
相关主题