乙苯主要工业生产方法及其危险性分析安全071 李锦洋摘要:本文概括介绍了工业上乙苯的主要生产方法及对其中危险性的分析关键词:工业生产、乙苯、烷基化、工艺技术、危险性乙苯是生产苯乙烯的中间产品,少量的乙苯也用于溶剂、稀释剂以及生产二乙基苯等。
目前在工业生产中,除极少数(≯4 %)乙苯来源于重整轻油C8芳烃馏份抽提外,其余90%以上是在适当催化剂存在下由苯与乙烯烷基化反应来制取。
1工业生产乙苯工艺到目前为止,工业上乙苯主要由苯与乙烯的烷基化反应来生产的。
由烷基化制乙苯的工艺至今经历了三个阶段,即由三氯化铝为催化剂的烷基化反应路线,以ZSM - 5沸石为催化剂的气相烷基化法以及由Y - 沸石为催化剂的液相法制乙苯工艺路线。
近几年来,国内也开展了以沸石为催化剂生产乙苯的研究,并显示了良好的工业前景。
同时,催化蒸馏技术制乙苯的研究也取得了进展。
1.1法法采用的是典型的Friedel - Crafts工艺,用配合物为催化剂。
反应的副产物主要为二乙苯和多乙苯,有液相法和均相法之分。
1.1.1 液相法传统的液相法是DOW化学公司于1935年开发的最早的乙苯生产工艺,在工业生产中占有重要地位。
国外多家化学公司都在此基础上开发了自己的技术(Basf 、Shell 、Monsanto 、UCC 等) 。
其中,使用最广泛的是UCC/ Badger工艺。
传统的液相法使用- HCl催化剂,溶解于苯、乙苯和多乙苯的混合物中,生成络和物。
该络和物在烷基化反应器中与液态苯形成两相反应体系,同时通入乙烯气体,在温度130℃以下,常压至0.15MPa下发生烷基化反应,生成乙苯和多乙苯,同时,多乙苯和乙苯发生烷基转移反应。
反应器中乙烯与苯摩尔比为0.30~0.35 ,乙烯转化率接近100%,烷基化反应收率为97.5%。
催化剂、苯、多乙苯循环使用,每吨乙苯副产焦油1.8~2.7kg。
此反应中苯的烷基化反应和多乙苯的烷基转移反应在一台反应器中完成。
为限制多乙苯的生成,必须控制乙烯与苯的比例。
工业生产装置控制乙烯与苯的分子比为0.3~0.4 左右。
反应产物的平衡组成只与反应混合物中烷基和苯核有关。
工艺流程见图1。
1.1.2 均相法由于传统的法存在着污染腐蚀严重及反应器内两个液相等问题,1974年Monsanto/ Lummus公司提出了均相法。
该工艺通过控制乙烯的投料,使催化剂的用量减少到处于溶解度范围内,使反应可以在均一的液相中进行,提高了乙苯的产率。
反应温度为160~180℃,压力0.6~0.8MPa ,乙烯与苯的摩尔比为0.8。
均相法进料乙烯浓度范围可为15%~100%。
当用稀乙烯为原料时,原料气中、、C和O均需净化至质量分数约为5×以下。
1.2Mobil - Badger气相法1976 年由Mobil 和Badger公司合作开发了以高硅ZSM - 5沸石为催化剂制乙苯的气相法。
1980年在美国Hoechst公司实现了工业化,年产47.3万吨乙苯。
实际生产中,反应器有两种工艺。
一是回收的多乙苯进入同一反应器。
另一种是进入另外一个烷基化反应器。
苯在温度为400 ℃左右,压力为1.2~1.6MPa下,以气相进入顶部床层,进行气相烷基化反应,同时也进行烷基转移反应。
苯与乙烯的重量综合比为18.5 ,乙烯转化率达99.8 %。
苯循环,回收后的多乙苯进入烷基转移反应器进行烷基转移反应。
其操作条件为:压力0.6~0.7MPa ,温度440~445℃,苯与多乙苯分子比为(1~1. 52) :1 ,苯单程转化率为15%(Wt ) ,乙苯收率为98%。
该工艺可以用浓乙烯为原料,也可用稀乙烯混合气体为原料,但在处理FCC干气或焦炉尾气原料时,为了延长催化剂单程寿命,需对原料进行严格精制(原料气中丙烯、、和O等杂质均需净化至质量分数均为以下) 。
该工艺装置投资和能耗相对较高(苯单耗0.749t/ t乙苯,乙烯0.168t/ t 乙苯)。
第一套利用炼厂气为原料生产乙苯的工业化试验装置建成于1977年,并于1991年在英国Stanlow建成投产了16万吨/年乙苯的第一套大型工业装置。
工艺流程见图2。
1.3Unocal/Lummus/ UOP液相法20 世纪80 年代以来, 美国Unocal/Lummus/UOP公司联合开发了固体酸催化剂上苯与乙烯液相法制乙苯的新技术,以USY沸石为催化剂,为粘合剂。
在232~316℃和2.79~6.99MPa下进行反应, 苯的质量空速2~10/h ,苯/乙烯摩尔比4~10。
该法不产生污染环境的废料, 反应温度低(一般不超过300℃) ,乙苯中二甲苯杂质含量仅为20~40×, 远远少于气相法。
催化剂的运转周期可长达一年, 对原料纯度要求不高。
使用后的催化剂可以进行器外再生,再生条件缓和,使用寿命可达3年。
1990年在日本Oita第一套工业装置投产,年产21.2万t乙苯。
世界上正式投产和正在组建中的装置有二十多套。
但该法只能用于浓乙烯的烷基化反应,而不适合FCC干气或焦炉尾气原料。
工艺流程见图3。
2危险性分析2.1物料危险性2.1.1 乙烯健康危害:具有较强的麻醉作用。
急性中毒:吸入高浓度乙烯可立即引起意识丧失,无明显的兴奋期,但吸入新鲜空气后,可很快苏醒。
对眼及呼吸道粘膜有轻微刺激性。
液态乙烯可致皮肤冻伤。
慢性影响:长期接触,可引起头昏、全身不适、乏力、思维不集中。
个别人有胃肠道功能紊乱。
危险特性:易燃,与空气混合能形成爆炸性混合物。
遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。
与氟、氯等接触会发生剧烈的化学反应。
有害燃烧产物:一氧化碳。
灭火方法:切断气源。
若不能切断气源,则不允许熄灭泄漏处的火焰。
喷水冷却容器,可能的话将容器从火场移至空旷处。
灭火剂:泡沫、二氧化碳、干粉。
泄漏应急处理:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。
切断火源。
建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。
尽可能切断泄漏源。
合理通风,加速扩散。
喷雾状水稀释。
如有可能,将漏出气用排风机送至空旷地方或装设适当喷头烧掉。
漏气容器要妥善处理,修复、检验后再用。
操作注意事项:密闭操作,全面通风。
操作人员必须经过专门培训,严格遵守操作规程。
建议操作人员穿防静电工作服。
远离火种、热源,工作场所严禁吸烟。
使用防爆型的通风系统和设备。
防止气体泄漏到工作场所空气中。
避免与氧化剂、卤素接触。
在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。
搬运时轻装轻卸,防止钢瓶及附件破损。
配备相应品种和数量的消防器材及泄漏应急处理设备。
运输注意事项:采用刚瓶运输时必须戴好钢瓶上的安全帽。
钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。
运输时运输车辆应配备相应品种和数量的消防器材。
装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。
严禁与氧化剂、卤素等混装混运。
夏季应早晚运输,防止日光曝晒。
中途停留时应远离火种、热源。
公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。
铁路运输时要禁止溜放。
2.1.2 苯由于苯的挥发性大,暴露于空气中很容易扩散。
人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。
中华人民共和国《危险货物品名表》(GB 12268-90)规定,苯属第三类危险货物易燃液体中的中闪点液体。
而且由于它的挥发性,可能造成蒸气局部聚集,因此在贮存,运输时要求远离火源和热源,防止静电。
2.1.3 乙苯健康危害:本品对皮肤、粘膜有较强刺激性,高浓度有麻醉作用。
急性中毒:轻度中毒有头晕、头痛、恶心、呕吐、步态蹒跚、轻度意识障碍及眼和上呼吸道刺激症状。
重者发生昏迷、抽搐、血压下降及呼吸循环衰竭。
可有肝损害。
直接吸入本品液体可致化学性肺炎和肺水肿。
慢性影响:眼及上呼吸道刺激症状、神经衰弱综合征。
皮肤出现粘糙、皲裂、脱皮。
燃爆危险:本品易燃,具强刺激性。
危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。
与氧化剂接触猛烈反应。
流速过快,容易产生和积聚静电。
其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
2.2工艺及设备危险性2.2.1 液相法该工艺反应介质的腐蚀性强,需要使用抗腐蚀的材料制造反应设备。
反应产物有机相经过水洗、碱洗后产生大量含有氢氧化铝淤浆的废水,加上废催化剂,造成了严重的环境污染。
由于其它烯烃能同样进行烷基化反应而消耗苯,并给分离造成困难;硫化物和乙炔能使催化剂失活,水使发生水解而生成不溶物A1(OH,易造成管道堵塞。
2.2.2 Mobil - Badger气相法由于ZSM - 5催化剂的活性温度较高,因此反应要在较高温度下进行。
防止在反应时应防止被烫伤,并且需要对设备管道进行保温措施。
设备的密封性要做好,防止物料泄漏。
2.2.3 Unocal/Lummus/ UOP液相法因物料具有毒性,设备的密封性一定要好,并经常检查。
参考文献:[1] 王兰海,韩金玉,王小为,甘肃科技,第22卷第2期 2006 年2月乙苯合成生产工艺及技术研究进展[2] 杨立英,王志良,张吉瑞,陈曙,化学世界,第十期乙苯合成生产工艺与技术研究进展。