上一讲内容回顾:CMOS 反相器结构和工作原理+V DDB 1G 1D 1S 1u Au YT NT PB 2D 2S 2G 2VSS+-uGSNu +-GSPAY 0V+V DD u Au GSN|u GSP |T NT Pu Y 0V<U th(N)>|U th(P)|截止导通V DD V DD >U th(N)<|U th(P)|导通截止0V设U th(N)=2V ,U th(P)=-2V ,V DD =5V 。
T R ONPu Y +V DD V DD SN T P T R ONNu Y +V DD 0V SN T PAY导通导通截止截止u A =0V 时u A =V DD 时电压传输特性和电流传输特性i D ++V DDB 1G 1D 1S 1u I-u OT NT PB 2D 2S 2G 2V SSA BCDE FU th(N)V DDU THU th(P)U NLU NHu O / Vu I / VD A BC E Fi D /mAu I / VU TH电压传输特性电流传输特性1. 常用逻辑功能的CMOS 门电路 (一)CMOS 逻辑与非和或非门电路 ①与非门A B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1110与非门u A+V DD +10VVSS T P1T N1T P2T N2A B Y u Bu Y0101AB Y =AB Y②或非门或非门B A Y +=u A+V DD +10V V SS T P1T N1T N2T P2ABYu B u YA B T N1T P1T N2T P2Y 0 00 11 01 1截通截通通通通截截通截截截截通通1000ABY (二)CMOS 漏极开路输出门电路(OD 门) 为什么需要OD 门能否将普通2个及以上的CMOS 门电路的输出直接连在一起,进而实现“线与”! 21Y Y Y =A B YC DY 1Y 2是否可以如此连接与应用10产生一个很大的电流 漏极开路输出CMOS 门电路(OD 门)AB Y AB Y =R L V DD2V DD1A BV SS用途:输出缓冲/驱动器;输出电平的变换;满足大功率负载电流的需要;实现线与逻辑。
应用举例“线与”连接方法R LV DD G 1A B Y 2G 2CD Y 1Y A BY C D R L V DD Y 2Y 1G 1G 2“线与”逻辑符号21Y Y Y ⋅=AB Y =1CD Y =2CD AB CD AB Y +=⋅= R L 的选择 m '个V DD V IHV ILV ILR L(max)L IH OH OH DD L R mI nI V V R =+-≤I OHI IHn 个OH L IH OH DD V R mI nI V ≥+-)(V OHV DD V IL V IL V IL R L m 个m 、m'是负载门电路分别为高、低电平时,负载门输入端进或出电流的数目。
负载门为CMOS 门电路情况下,m 和m '相等。
V OLI OL I IL (max)/)(OL IL L OL DD I I m R V V ≤'+-(min)(max)||L IL OL OLDD L R I m I V V R ='--≥ (三)CMOS 传输门和双向模拟开关及CMOS 异或门TG C C u o /u iu i /u oCCu i /u o u o /u iV DD 时,传输门导通。
01==C C ,时,传输门截止。
10==C C ,传输门的一个用途可作模拟开关,用来传输连续变化的模拟电压信号。
TG Cu i /u o u o /u i SW u o /u i u i /u o C SWu o u i C R L C =1时开关接通;C =0时开关截止。
利用CMOS 传输门和CMOS 反相器可以组合成各种复杂的逻辑电路,如:异或门、同或门、触发器等。
用反相器和传输门构成异或门电路TG 1TG 2AB YA B Y B A Y ⊕=A =1、B =0时,TG 1截止,TG 2导通,Y = =1;B A =0、B =1时,TG 2截止,TG 1导通,Y =B =1;A =0、B =0时,TG 2截止,TG 1导通,Y =B =0;A =1、B =1时,TG 1截止,TG 2导通,Y = =0;B 01100 00 11 01 1YA B(四)三态输出CMOS 门电路三态输出的CMOS 反相器控制端低电平有效三态门: YAEN V DDA Y EN=时,反相器正常工作。
0EN 时,输出呈现高阻态。
1=EN 低电平有效⎩⎨⎧===)()(10EN Z EN A Y 控制端高电平有效三态门:A Y EN高电平有效⎩⎨⎧===)()(01EN Z EN A Y 三态门有三种状态:高电平、低电平、高阻态。
注意:高阻状态不是逻辑状态!三态输出反相器应用举例用三态输出反相器接成总线结构…1EN 1A 1G 2EN 2A 2G nEN nA nG ……总线用三态输出反相器实现数据双向传输EN Y O D 1G 2G 总线ID I O D D /(五)CMOS 电路的特点与使用注意问题 ①CMOS 电路的优点• 静态功耗小;允许电源电压范围宽?20V);扇出系数大,噪声容限大。
②CMOS 电路的正确使用 输入电路的静电保护• 所有与CMOS 电路直接接触的工具、仪表等必须可靠接地。
• 存储和运输CMOS 电路,最好采用金属屏蔽层做包装材料。
多余的输入端不能悬空• 可以按功能要求接电源或接地,或与其它输入端并联使用。
输入电路需过流保护• 低内阻信号源时,输入端与信号源之间串进保护电阻; • 输入端接有大电容时,应在输入端和电容之间串联接入保护电阻;• 输入端接长线时,应在门电路的输入端串联接入保护电阻。
2. 74LS 系列TTL 门电路(一)LSTTL 非门结构与工作原理TTL 集成门电路发展主要经历了四个系列,74系列、74H 系列、74S 系列、74LS 系列。
前三个系列已经被淘汰,74LS 系列虽面临淘汰,但是目前仍有使用,故课程仅简单介绍74LS 系列原理。
利用肖特基管的低导通电压~和多数载流子形成电流特性抗深饱和提高速度。
R R RR R R D 3V CCY28K120KAB 1.5KT 2T 3T 45120T 5R 44K C 3K T 6u o u i D 2612K D 1SBDb ee cbc电压关系表u I /V u O /V 0.3 3.4(4.3)3.40.3真值表0110A YD2、D3的作用D2在T5导通的瞬间起作用,可抽取T4的基区电荷,加速其截止过程。
D3在T5导通的过程中起作用,此时T2的集电极电位比T5的集电极电位低,可以通过D3给负载电容放电,而这个放电电流又去驱动T5,减小了电路的导通延迟。
T6电路的作用T2由截止变导通,先驱动T5饱和导通,然后T6才导通,对(四)LSTTL 与非门74LS00逻辑与V CCY R 2R 1BR BT 2T 3T 4R 5T 5R 4R C T 6D 5D 6A R 6D 4D 2D 1D 3V 7CC 1148GNDD 3和D 4为输入保护二极管(五)CMOS 门电路与TTL 门电路两者特点比较• CMOS 工作速度一般比TTL 低,HCMOS 与TTL 相当。
• CMOS 扇出系数比TTL 电路大。
• CMOS 电路的电源电压允许范围较大,约在~20V ,抗干扰能力比TTL 电路强。
• CMOS 电路的功耗比TTL 电路小得多。
TTL 功耗几mW 、 CMOS 的功耗只有几个μW 。
• CMOS 集成电路的集成度比TTL 电路高。
• CMOS 电路容易受静电感应而击穿,在使用和存放时应注意静电屏蔽,焊接时电烙铁应接地良好,尤其是CMOS 电路多余不用输入端不能悬空,应根据需要接地或接高电平。
速度TTL(LS)大小(µ30%功耗噪声容限扇出系数集成度快(mW)(0.4V 左右)小(20≤)低CMOS 较快(74HC)小W)大(≥V DD )大(≥50)高多余输入端的处理措施处理原则:不能影响输入与输出之间的逻辑关系。
①可并联起来使用;②可根据逻辑关系的要求接地或接高电平。
• TTL 电路多余的输入端悬空表示输入为高电平。
一般可根据门电路逻辑功能将多余的输入端通过上拉电阻(1~3K?)接电源正端(逻辑1的处理);直接把多余端接地(逻辑0的处理)。
尽量把多余的输入端并联使用;虽然可以通过大电阻接地(逻辑1的处理),但最好不要采用。
• CMOS 电路,多余的输入端不允许悬空,否则电路将不能正常工作。
对于CMOS 电路对多余输入端,尽量根据门电路逻辑功能并联使用,或者根据需要直接接地(逻辑0的处理);或直接接V DD (逻辑1的处理)。