当前位置:文档之家› 植物生理学笔记整理

植物生理学笔记整理

《现代植物生理学》绪论1、植物生理学:是研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。

植物生理学的研究对象是高等植物。

高等植物的生命活动主要分为生长发育与形态建成、物质与能量代谢、信息传递和信号转导3个方面。

2、萨克斯于1882年撰写出《植物生理学讲义》并开设课程,他的弟子费弗尔1904年出版三卷本《植物生理学》著作。

这两部著作的问世,标志着植物生理学从植物学中脱胎而出,独立成为一门新兴的科学体系。

细胞生理3、水势(Ψw ):同温同压下,每偏摩尔体积纯水与水的化学势差。

(细胞水势由三部分组成:溶质势(ψs),衬质势(ψm)和压力势(ψp),即Ψw=ψs+ψm+ψp)4、溶质势(ψs ):由于溶质的存在而使水势降低的值称为溶质势。

压力势(ψp):细胞壁对原生质体产生压力引起的水势变化值。

衬质势(ψm):由于亲水物质对水的吸引而降低的水势。

5、蒸腾作用的生理意义:a.水分吸收和运输的主要动力;b.是矿质元素和有机物运输的动力;c.降低叶温。

d.有利于气体交换6、现已确定有17种元素是植物的必需元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、硫(S)钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、硼(B)、钼(Mo)、镍(Ni)、氯(Cl)。

根据植物对必需元素需要量的大小,通常把植物必需元素划分为两大类,即大量元素和微量8、缺素症9、单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植物就会呈现不正常状态,最终死亡,这种现象称为单盐毒害。

离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或消除,离子间的这种作用称为离子对抗。

(单盐毒害和离子对抗的内容也要看下及书上面的什么是“生理酸性盐”、“生理碱性盐”、“生理中性盐”也要看P81)11、植物的光合作用过程光合作用:是绿色植物大规模地利用太阳能把CO₂和H2O合成富能的有机物,并释放出O2的过程。

12、C4植物比C3植物光合作用强的原因⑴结构原因:C3:维管束鞘细胞发育不好,无花环型,叶绿体无或少;光合在叶肉细胞中进行,淀粉积累影响光合。

C4:维管束鞘细胞发育良好,有花环型,叶绿体较大;光合在维管束鞘细胞中进行。

有利于光合产物的就近运输,防止淀粉积累影响光合。

⑵生理原因:①PEPC对CO2的Km(米氏常数)远小于Rubisico,所以C4对CO2的亲合力大,低CO2浓度(干旱)下,光合速率更高。

②C4植物将CO2泵入维管束鞘细胞,改变了CO2/O2比率,改变了Rubisico的作用方向,降低了光呼吸。

13.光补偿点:当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度称为光补偿点。

光饱和点:光合速率开始达到最大值时的光强度称为光饱和点。

——P132CO₂补偿点:当光合速率与呼吸速率相等时,外界环境中的CO₂浓度即为CO₂补偿点(图中C 点)。

CO ₂饱和点:光合速率开始达到最大值时的CO ₂浓度被称为CO ₂饱和点。

(图中S 点)——P134图4-2614.实验证明,呼吸链中酶复合体I 、III 和IV 是3个偶联部位,酶复合体II 不是偶联部位。

NADH 经呼吸链氧化要通过酶复合体I 、III 和IV 3个偶联部位,可形成3molATP 。

FADH2经呼吸链氧化只通过酶复合体III 和IV 2个偶联部位,所以只形成2molATP 。

15.磷/氧比(P/O ratio )是评价氧化磷酸化作用活力的指标,是指呼吸作用每消耗1mol 氧经氧化磷酸化作用合成了多少(mol )ATP 。

电子传递链呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的氧分子,并与之结合生成水的全部体系称为呼吸链。

和FADH2电子传递途径NADH 电子传递途径通过了酶复合体I 、III 、IV ,每传递一对电子可磊出10个H ,因此该途径P/O=3,该途径受鱼藤酮、抗霉素A 、氰化物抑制。

FADH2电子传递途径绕过了酶复合体I,通过了酶复合体III 、IV ,每传递一对电子可磊出6个H ,因此该途径P/O=2 ,该途径不受鱼藤酮、抗霉素A 、氰化物抑制。

另外,植物细胞线粒体内膜还存在一种对鱼藤酮不敏感的NADH 脱氢酶,氧化从“苹果酸穿梭”产生的NADH ,该电子传递途径绕过了酶复合体I ,电子从UQ 处进入电子传递链,每传递一对电子可磊出6个H ,P/O=2,该途径被看做酶复合体I 超负荷运转时分流电子的一条支路。

2.NAD (P )H 电子传递途径这是一条细胞色素呼吸电子传递链的支路。

电子由UQ 处进入电子传递链。

电子传递途径绕过了酶复合体I ,每传递一对电子可磊出6个H ,因此该途径P/O=2。

该途径不受鱼藤酮抑制,受抗霉素A 和氰化物抑制。

主路 P/O=3支路ⅠⅡ P/O=2 支路Ⅲ P/O=1 交替途径 P/O=13.交替途径(AP)这是植物细胞线粒体中存在的一条对氰化物不敏感的电子传递途径,故又称为抗氰支路。

这时一条细胞色素呼吸链之外的电子传递途径。

电子自NADH脱下后,经FMN→Fe-S传递到UQ,然后从UQ传递给一种黄素蛋白,再经酶复合体III、IV,其P/O=1,电子传递释放出能量,主要以热能形式散失。

该电子传递途径受鱼藤酮抑制,不受抗霉素A和氰化物抑制。

16. 糖酵解(EMP)关键酶:①果糖磷酸激酶(最关键的限速酶):AMP比值对该酶活性的调节具有重要的生理意义。

当ATP浓度较高时,该酶几乎无活性,酵解作用减弱;当AMP积累,ATP较少时,酶活性恢复,酵解作用增强。

可抑制果糖磷酸激酶的活性,它可防止肌肉中形成过量的乳酸而使血液酸中毒。

c.柠檬酸含量高,说明细胞能量充足,葡萄糖就无须为合成其前体而降解。

因此柠檬酸可增加ATP对酶的抑制作用。

d.果糖6-磷酸在果糖磷酸激酶的催化下可磷酸化为果糖-2,6-二磷酸。

果糖-2,6-二磷酸能消除ATP对酶的抑制效应,使酶活化。

②己糖激酶:G-6-磷酸是该酶的别构抑制剂③丙酮酸激酶:a.果糖-1,6-二磷酸是该酶的激活剂,可加速酵解速度b.丙氨酸是该酶的别构抑制剂、乙酰辅酶A、柠檬酸等也可抑制该酶的活性,减弱酵解速度。

17. 三羧酸循环(TCA)关键酶:①丙酮酸脱氢酶系:该酶催化的反应虽不属于柠檬酸循环,但对于葡萄糖来说是进入柠檬酸循环的必经之路。

乙酰CoA和NADH是该酶的抑制剂,NAD+和CoA则是该酶的激活剂。

②柠檬酸合酶:是该途径关键的限速酶。

其活性受ATP、NADH、琥珀酰CoA的抑制;草酰乙酸和乙酰CoA的浓度较高时,可激活该酶的活性。

③异柠檬酸脱氢酶:受到Ca 和ADP的别构激活和NADH的抑制。

④α-酮戊二酸脱氢酶系:是三羧酸循环的另外一种限速酶。

它们的活性也受ATP、NADH的抑制;琥珀酰CoA是该酶的抑制剂。

18、受体:是指能够特异地识别并结合信号分子,进而引起生物学效应的物质。

受体的功能:①受体能识别特异的信号分子——配体(如激素),并能同它发生特异性结合;②受体能够把识别和接收的信号准确无误地放大并传递到细胞内部,启动一系列胞内生化反应,最后导致特定的细胞反应,使得胞间信号转换为胞内信号。

受体的特性:①特异性②亲和性③饱和性④有效性⑤可逆性信使第一信使(胞外信息分子):激素第二信使(胞内信息分子):3',5'环腺苷酸(cAMP)、3',5'环鸟苷酸(cGMP)、Ca 、1,4,5-三磷酸肌醇(IP3)、二酰甘油(DAG)19、植物生长物质:是指具有调节植物生长发育功能的一些生理活性物质,包括植物激素和植物生长调节剂。

植物激素:是指在植物体内合成的,可以移动的,对生长发育产生显著作用的微量有机物质。

植物生长调节剂:是指人工合成的具有类似植物激素生理活性的化合物。

20.生长素类(IAA)、赤霉素类(GA)、细胞分裂素类(CTK)、脱落酸(ABA)和乙烯(ETH)的生理作用及各激素间的相互关系:1)生长素的生理作用:1.促进生长A.双重效应B.不同器官对IAA敏感性:根>芽>茎C.离体器官效应明显,对整株效果不明显。

2.促进不定根的形成核分裂3.对养分调运的作用单性结实4.引起顶端优势5.其它效应促进开花(雌),保花保果,疏花疏果,向光性、向重力性。

2)赤霉素的生理作用:1.促进茎的伸长生长A.促进整株生长,离体器官作用不大。

B.促进节间的伸长,不是节数的增加C.无高浓度抑制2.促进抽苔开花3.打破休眠A.促进马铃薯块茎发芽B.促进需光、需低温种子发芽C.打破大麦休眠,加速酿酒过程。

4.促进雄花分化5.其它效应养分的调运、促进植物座果和单性结实、延缓叶片衰老、促进细胞的分裂和分化。

3)细胞分裂素的生理作用:1.促进细胞分裂与扩大A.促进质分裂B.促进叶片扩大2.促进芽分化3.延迟叶片衰老4.促进侧芽发育5.促进雌花分化6.促进气孔开放4)脱落酸的生理作用:1.促进休眠:ABA/GA2.促进脱落、衰老:离层形成,不如ETH广泛3.“胁迫激素”,促进气孔关闭,产生抗逆蛋白4.抑制生长:整株植物或离体器官和种子萌发5)乙烯的生理作用:1.改变生长习性A.三重反应:抑制伸长增粗横向B.偏上生长:上部生长>下部2.催熟果实3.促进脱落和衰老:离层形成应4.促进开花和雌花分化5.乙烯的其它效应:打破种子和芽的休眠,诱导次生物质分泌一、植物激素间的相互关系1 激素间的增效作用与拮抗作用1).增效作用指一种激素可加强另一种激素的效应,此种现象称为激素的增效作用IAA与GA 节间伸长IAA与CTK 细胞分裂脱落酸与乙烯器官脱落2).拮抗作用拮抗作用:指一种物质的作用被另一种物质所阻抑的现象。

GA 休眠ABA与IAA 器官生长CTK 衰老、脱落IAA与GA 不定根形成雌雄花分化IAA与CTK 顶端优势二、激素间平衡对生理效应的影响CTK/IAA 高,芽分化低,根分化中间水平,愈伤组织只生长不分化GA/IAA 高,韧皮部分化低,木质部分化21.种子生活力:是指种子能够萌发的潜在能力或种胚具有的生命力。

22.根冠比(R/T):指地下部分的质量与地上部分的质量的比值。

地下部是指植物体的地下器官,包括根、块茎、鳞茎等;①通气良好R/T 上升而地上部是指植物体的地上器官,包括茎、叶、花、果等。

②土营养状况N多R/T 下降;P、K多R/T 上升23、黄化现象:黑暗中生长的植物产生黄化苗的现象称为黄化现象。

24.向性运动:是指植物的某些器官由于受到外界环境中单方向的刺激而产生的运动。

(P297)25.春化作用低温是诱导植物进行花芽分化的重要环境因素。

一些植物必须经历一定的低温,才能形成花原基,进行花芽分化。

相关主题