高考专题突破五 高考中的圆锥曲线问题【考点自测】1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.2.(2017·全国Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63 B.33 C.23 D.13答案 A解析 由题意知,以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a =13, ∴e =c a =a 2-b 2a=1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.故选A.3.(2017·全国Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 答案 A解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-1k ,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 显然,该方程必有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4=4(1+k 2)k 2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k 2+4(1+k 2)=4⎝⎛⎭⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2=16, 当且仅当k 2=1k2,即k =±1时,取得等号.故选A.4.(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知a =1,b 2=m ,c =1+m ,故双曲线的离心率e =ca =1+m =3,∴1+m =3,解得m =2.5.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0, 显然,方程必有两个不等实根. ∴y 1+y 2=2pb 2a 2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .题型一 求圆锥曲线的标准方程例1 (2018·佛山模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B .若|BF 2|=|F 1F 2|=2,则该椭圆的方程为( ) A.x 24+y 23=1 B.x 23+y 2=1C.x 22+y 2=1 D.x 24+y 2=1 答案 A解析 ∵|BF 2|=|F 1F 2|=2,∴a =2c =2,∴a =2,c =1,∴b =3,∴椭圆的方程为x 24+y 23=1.思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、简单性质,解得标准方程中的参数,从而求得方程.跟踪训练1 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1 答案 D解析 双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2b a 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,故选D. 题型二 圆锥曲线的简单性质例2 (1)(2018届辽宁凌源二中联考)已知双曲线C :x 2a 2-y 216=1(a >0)的一个焦点为(5,0),则双曲线C 的渐近线方程为( ) A .4x ±3y =12 B .4x ±41y =0 C .16x ±9y =0 D .4x ±3y =0答案 D解析 由题意得c =5,则a 2=c 2-16=9,即a =3,所以双曲线的渐近线方程为y =±43x ,即4x ±3y =0,故选D.(2)(2016·天津)设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A作l 的垂线,垂足为B .设C ⎝⎛⎭⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________. 答案6解析 由⎩⎪⎨⎪⎧x =2pt 2,y =2pt(p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝⎛⎭⎫p 2,0,又|CF |=2|AF |且|CF |=⎪⎪⎪⎪72p -p 2=3p , ∴|AB |=|AF |=32p ,可得A (p ,2p ). 易知△AEB ∽△FEC , ∴|AE ||FE |=|AB ||FC |=12, 故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的简单性质是高考考查的重点,求离心率、准线、双曲线渐近线是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.跟踪训练2 (2017·全国Ⅱ)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2 B. 3 C. 2 D.233答案 A解析 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式,得|2b |a 2+b 2=3,解得b 2=3a 2.所以C 的离心率e =ca=c 2a 2=1+b 2a 2=2. 故选A.题型三 最值、范围问题例3 (2017·浙江)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32,过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值. 解 (1)由P (x ,y ),即P (x ,x 2).设直线AP 的斜率为k ,则k =x 2-14x +12=x -12,因为-12<x <32.所以直线AP 斜率的取值范围为(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减.因此当k =12时,|P A |·|PQ |取得最大值2716.思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的简单性质的角度考虑,根据圆锥曲线的几何意义求最值与范围.跟踪训练3 (2016·山东)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标. (1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点为F ⎝⎛⎭⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝⎛⎭⎫m ,m22(m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ).即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22, 得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m <2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m, 所以直线OD 方程为y =-14mx ,联立方程⎩⎪⎨⎪⎧y =-14mx ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.②解 由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎫0,-m 22,又P ⎝⎛⎭⎫m ,m 22,F ⎝⎛⎭⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1), 所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t+2,当1t =12,即t =2时,S 1S 2取到最大值94, 此时m =22,满足(*)式,所以P 点坐标为⎝⎛⎭⎫22,14. 因此S 1S 2的最大值为94,此时点P 的坐标为⎝⎛⎭⎫22,14.题型四 定点、定值问题例4 (2017·益阳、湘潭调研)已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切. (1)求点P 的轨迹C 的方程;(2)设G (m,0)为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A ,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值,并求出该定值. 解 (1)由题设得|PM |+|PN |=4>|MN |=2, ∴点P 的轨迹C 是以M ,N 为焦点的椭圆, ∵2a =4,2c =2,∴b =a 2-c 2=3,∴点P 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),G (m,0)(-2<m <2), 直线l :y =k (x -m ),由⎩⎪⎨⎪⎧y =k (x -m ),x 24+y 23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0, x 1+x 2=8mk 24k 2+3,x 1·x 2=4k 2m 2-124k 2+3,∴y 1+y 2=k (x 1-m )+k (x 2-m ) =k (x 1+x 2)-2km =-6mk4k 2+3.y 1·y 2=k 2(x 1-m )(x 2-m ) =k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2 =3k 2(m 2-4)4k 2+3.∴|GA |2+|GB |2=(x 1-m )2+y 21+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2 =(k 2+1)-6m 2(4k 2-3)+24(3+4k 2)(4k 2+3)2. ∵ω=|GA |2+|GB |2的值与m 无关,∴4k 2-3=0, 解得k =±32.此时ω=|GA |2+|GB |2=7. 思维升华 求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.跟踪训练4 已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由. (1)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0,①故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9. 于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k =-9. 所以直线OM 的斜率与l 的斜率的乘积为定值.(2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m 3,m ,由①中判别式Δ=4k 2b 2-4(k 2+9)·(b 2-m 2)>0,得k 2m 2>9b 2-9m 2,又b =m -k 3m ,所以k 2m 2>9⎝⎛⎭⎫m -k 3m 2-9m 2, 得k 2>k 2-6k ,所以k >0.所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9kx . 设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝⎛⎭⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3, 因此x M =km (k -3)3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×km (k -3)3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.题型五 探索性问题例5 (2018·泉州模拟)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2 2.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得|QA ||QB |=|P A ||PB |恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)由已知,点(2,1)在椭圆E 上,因此⎩⎪⎨⎪⎧ 2a 2+1b 2=1,a 2-b 2=c 2,c a =22,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1. (2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C ,D 两点,如果存在定点Q 满足条件,则有|QC ||QD |=|PC ||PD |=1, 即|QC |=|QD |,所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0).当直线l 与x 轴垂直时,设直线l 与椭圆相交于M ,N 两点,则M ,N 的坐标分别为(0,2),(0,-2),由|QM ||QN |=|PM ||PN |,有|y 0-2||y 0+2|=2-12+1, 解得y 0=1或y 0=2,所以若存在不同于点P 的定点Q 满足条件,则Q 点坐标只可能为(0,2).证明如下:对任意直线l ,均有|QA ||QB |=|P A ||PB |,其中Q 点坐标为(0,2). 当直线l 的斜率不存在时,由上可知,结论成立;当直线l 的斜率存在时,可设直线l 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1, x 1x 2=-22k 2+1, 因此1x 1+1x 2=x 1+x 2x 1x 2=2k , 易知点B 关于y 轴对称的点B ′的坐标为(-x 2,y 2),又k QA =y 1-2x 1=kx 1-1x 1=k -1x 1, k QB ′=y 2-2-x 2=kx 2-1-x 2=-k +1x 2=k -1x 1, 所以k QA =k QB ′,即Q ,A ,B ′三点共线,所以|QA ||QB |=|QA ||QB ′|=|x 1||x 2|=|P A ||PB |, 故存在与点P 不同的定点Q (0,2),使得|QA ||QB |=|P A ||PB |恒成立. 思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.跟踪训练5 (2018届珠海摸底)已知椭圆C 1,抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,其坐标分别是(3,-23),(-2,0),(4,-4),⎝⎛⎭⎫2,22. (1)求C 1,C 2的标准方程;(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N 且满足OM→⊥ON →?若存在,求出直线方程;若不存在,请说明理由.解 (1)设抛物线C 2:y 2=2px (p ≠0),则有y 2x=2p (x ≠0), 据此验证四个点知(3,-23),(4,-4)在抛物线上,易得,抛物线C 2的标准方程为C 2:y 2=4x ;设椭圆C 1:x 2a 2+y 2b2=1(a >b >0), 把点(-2,0),⎝⎛⎭⎫2,22代入可得a 2=4,b 2=1. 所以椭圆C 1的标准方程为x 24+y 2=1. (2)由椭圆的对称性可设C 2的焦点为F (1,0),当直线l 的斜率不存在时,直线l 的方程为x =1.直线l 交椭圆C 1于点M ⎝⎛⎭⎫1,32,N ⎝⎛⎭⎫1,-32, OM →·ON →≠0,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),并设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 2+4y 2=4, 消去y ,得(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=8k 21+4k 2,x 1x 2=4(k 2-1)1+4k 2, y 1y 2=k (x 1-1)·k (x 2-1)=k 2x 1x 2-k 2(x 1+x 2)+k 2=-3k 21+4k 2,① 由OM →⊥ON →,得OM →·ON →=0,即x 1x 2+y 1y 2=0.②将①代入②式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0, 解得k =±2.经检验,k =±2都符合题意.所以存在直线l 满足条件,且l 的方程为2x -y -2=0或2x +y -2=0.1.已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32. (1)求椭圆C 的方程;(2)已知直线l :y =kx +m 被圆O :x 2+y 2=4所截得的弦长为23,若直线l 与椭圆C 交于M ,N 两点,求△MON 面积的最大值. 解 (1)由题意知,椭圆C 的焦点在x 轴上,设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0), 则e 2=c 2a 2=a 2-b 2a 2=34, ∴a 2=4b 2,即a =2b ,可得c =3b ,S △ABF =12|AF |·|OB |=12(a -c )b =1-32, ∴12(2b -3b )b =⎝⎛⎭⎫1-32b 2=1-32, ∴b =1,a =2,∴椭圆C 的方程为x 24+y 2=1. (2)由题意知,圆O 的半径r =2,弦长l =23,∴圆心O 到直线l 的距离d =r 2-⎝⎛⎭⎫l 22=4-(3)2=1, 即|m |1+k 2=1,所以m 2=1+k 2. 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m ,消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0,∴Δ=16(4k 2-m 2+1)=48k 2>0,∴k ≠0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2, ∴|MN |=1+k 2·(x 1-x 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8km 1+4k 22-4·4m 2-41+4k2 =1+k 2·44k 2-m 2+14k 2+1 =1+k 2·43|k |4k 2+1=43k 2(k 2+1)4k 2+1, ∴△MON 的面积为S △MON =12|MN |×1=23k 2(k 2+1)4k 2+1, 令t =4k 2+1>1, 则S =23×t -14×⎝ ⎛⎭⎪⎫t -14+1t 2=32-⎝⎛⎭⎫1t -132+49,∴当t =3,即k =±22时,△MON 的面积取到最大值1. 2.(2018·新余联考)如图所示,已知点E (m,0)为抛物线y 2=4x 内的一个定点,过E 作斜率分别为k 1,k 2的两条直线,分别交抛物线于点A ,B ,C ,D ,且M ,N 分别是AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值;(2)若k 1+k 2=1,求证:直线MN 过定点.(1)解 当m =1时,E 为抛物线y 2=4x 的焦点,∵k 1k 2=-1,∴AB ⊥CD ,直线AB 的方程为y =k 1(x -1),设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =k 1(x -1),y 2=4x ,得k 1y 2-4y -4k 1=0,显然方程有两不等实根,y 1+y 2=4k 1,y 1y 2=-4, ∵AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, x 1+x 2=y 1k 1+1+y 2k 1+1=4k 21+2. ∴M ⎝⎛⎭⎫2k 21+1,2k 1, 同理,点N (2k 21+1,-2k 1).∴S △EMN =12|EM |·|EN | =12⎝⎛⎭⎫2k 212+⎝⎛⎭⎫2k 12·(2k 21)2+(-2k 1)2 =2k 21+1k 21+2≥22+2=4,当且仅当k 21=1k 21,即k 1=±1时,△EMN 的面积取最小值4.(2)证明 直线AB 的方程为y =k 1(x -m ),设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y =k 1(x -m ),y 2=4x , 得k 1y 2-4y -4k 1m =0,显然方程有两不等实根.y 1+y 2=4k 1,y 1y 2=-4m , ∵AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, x 1+x 2=y 1k 1+m +y 2k 1+m =4k 1k 1+2m =4k 21+2m , ∴M ⎝⎛⎭⎫2k 21+m ,2k 1, 同理,点N ⎝⎛⎭⎫2k 22+m ,2k 2, ∴k MN =k 1k 2k 1+k 2=k 1k 2, ∴直线MN :y -2k 1=k 1k 2⎣⎡⎦⎤x -⎝⎛⎭⎫2k 21+m , 即y =k 1k 2(x -m )+2,∴直线MN 恒过定点(m,2).3.(2017·衡水联考)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,请说明理由.(1)证明 方法一 当直线AB 垂直于x 轴时,y 1=22,y 2=-22,因此y 1y 2=-8(定值).当直线AB 不垂直于x 轴时,设直线AB 的方程为y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8,为定值.方法二 显然直线AB 的斜率不为0.设直线AB 的方程为my =x -2, 由⎩⎪⎨⎪⎧ my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8,为定值.(2)解 设存在直线l :x =a 满足条件,则AC 的中点为E ⎝⎛⎭⎪⎫x 1+22,y 12, |AC |=(x 1-2)2+y 21. 因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4,又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a 故所截弦长为2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2 =-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.4.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.解 (1)由题意知,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2, 故直线AB 的方程为x =±2, 圆心O 到直线AB 的距离d = 2. 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t(x -t ). 即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+[-(x 0-t )]2. 又x 20+2y 20=4,t =-2y 0x 0, 故d = ⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4= ⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切. 综上,直线AB 与圆x 2+y 2=2相切.5.(2018·商丘质检)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e = 32,a +b =3. (1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.(1)解 因为e =32=c a , 所以a =23c ,b =13c . 代入a +b =3得,c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1. (2)证明 因为B (2,0),点P 不为椭圆顶点,则可设直线BP 的方程为y =k (x -2)⎝⎛⎭⎫k ≠0,k ≠±12,① ①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.② ①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知 -4k 4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k 2k -1-04k +22k -1-4k -22k +1 =4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14. 则2m -k =2k +12-k =12(定值).6.(2018届广东六校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,22,且两焦点与短轴的一个端点的连线构成等腰直角三角形.(1)求椭圆C 的方程;(2)动直线l :mx +ny +13n =0(m ,n ∈R )交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T .若存在,求出点T 的坐标;若不存在,请说明理由.解 (1)因为椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,所以a =2b ,所以x 22b 2+y 2b2=1, 又因为椭圆经过点P ⎝⎛⎭⎫1,22,代入可得b =1. 所以a =2,故所求椭圆的方程为x 22+y 2=1. (2)首先求出动直线过点⎝⎛⎭⎫0,-13. 当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=⎝⎛⎭⎫432, 当l 与y 轴平行时,以AB 为直径的圆的方程为x 2+y 2=1,由⎩⎪⎨⎪⎧ x 2+⎝⎛⎭⎫y +132=⎝⎛⎭⎫432,x 2+y 2=1,解得⎩⎪⎨⎪⎧x =0,y =1, 即两圆相切于点(0,1),因此所求的点T 如果存在,只能是(0,1),事实上,点T (0,1)就是所求的点.证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (0,1),当直线l 不垂直于x 轴时,可设直线l :y =kx -13, 由⎩⎨⎧ y =kx -13,x 22+y 2=1,消去y ,得(18k 2+9)x 2-12kx -16=0,记点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9.又因为TA →=(x 1,y 1-1),TB →=(x 2,y 2-1),所以TA →·TB →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+⎝⎛⎭⎫kx 1-43⎝⎛⎭⎫kx 2-43 =(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)·-1618k 2+9-43k ·12k 18k 2+9+169=0, 所以TA →⊥TB →,即以AB 为直径的圆恒过点T (0,1),所以在坐标平面上存在一个定点T (0,1)满足题意.。