当前位置:文档之家› 直流力矩电动机

直流力矩电动机

1.3 直流力矩电动机
1.3.1 概述
在某些自动控制系统中,被控对象的运动速度相对来说是比较低的。

例如某一种防空雷达天线的最高旋转速度为90°/s,这相当于转速15 r/min。

一般直流伺服电动机的额定转速为1500 r/min或3000 r/min,甚至6000 r/min,这时就需要用齿轮减速后再去拖动天线旋转。

但是齿轮之间的间隙对提高自动控制系统的性能指标很有害,它会引起系统在小范围内的振荡和降低系统的刚度。

因此,我们希望有一种低转速、大转矩的电动机来直接带动被控对象。

直流力矩电动机就是为满足类似上述这种低转速、大转矩负载的需要而设计制造的电动机。

它能够在长期堵转或低速运行时产生足够大的转矩,而且不需经过齿轮减速而直接带动负载。

它具有反应速度快、转矩和转速波动小、能在很低转速下稳定运行、机械特性和调节特性线性度好等优点。

特别适用于位置伺服系统和低速伺服系统中作执行元件,也适用于需要转矩调节、转矩反馈和一定张力的场合(例如在纸带的传动中)。

1.3.2 结构特点
直流力矩电动机的工作原理和普通的直流伺服电动机相同,只是在结构和外形尺寸的比例上有所不同。

一般直流伺服电动机为了减少其转动惯量,大部分做成细长圆柱形。

而直流力矩电动机为了能在相同的体积和电枢电压下产生比较大的转矩和低的转速,一般做成圆盘状,电枢长度和直径之比一般为0.2 左右;从结构合理性来考虑,一般做成永磁多极的。

为了减少转矩和转速的波动,选取较多的槽数、换向片数和串联导体数。

总体结构型式有分装式和内装式两种,分装式结构包括定子、转子和刷架三大部件,机壳和转轴由用户根据安装方式自行选配;内装式则与一般电机相同,机壳和轴已由制造厂装配好。

图1 - 28 直流力矩电动机的结构示意图
1.3.3 为什么直流力矩电动机转矩大、转速低
如上所述,力矩电动机之所以做成圆盘状,是为了能在相同的体积和控制电压下产
生较大的转矩和较低的转速。

下面以图 1 - 29 所示的简单模型, 粗略地说明外形尺寸变化对转矩和转速的影响。

1. 电枢形状对转矩的影响
由1.2 节给出的电磁转矩公式(1 - 2), 得到图 1 - 29(a)时的电磁转矩为
1-38
式中, Na 为图 3 - 29(a)中电枢绕组的总导体数; Bp 为一个磁极下气隙磁通密度的平均值; la 为图 1 - 29(a)中导体在磁场中的长度, 即电枢铁心轴向长度; ia 为电枢导体中的电流; Da 为图 1 - 29(a)中电枢的直径。

图 1 - 29 电枢体积不变的条件下, 不同直径时的电枢形状
因为电枢体积的大小, 在一定程度上反映了整个电动机的体积, 因此可以在电枢体积不变的条件下, 比较不同直径时所产生的转矩。

如果把图中电枢的直径增大 1 倍, 而保持体积不变, 此时电动机的形状则如图 1 - 29(b)所示, 即该图中电枢直径Db=2Da, 电枢长度lb=la/4。

假定两种情况下电枢导体的电流一样, 那末两种情况下导体的直径也一样, 但图(b)中电枢铁心截面积增大到图(a)的 4 倍, 所以槽面积及电枢总导体数Nb 也近似增加到图(a)的 4 倍, 即Nb=4Na 。

这样一来, 乘积Nblb=4Na ·la/4=Nala 。

也就是说, 在电枢铁心体积相同, 导体直径不变的条件下, 即使改变其铁心直径, 导体数N 和导体有效长度l 的乘积仍不变。

据此, 我们可以得到图 (b)时的电磁转矩为
2.电枢形状对空栽转速的影响
已知一个极下一根导体的平均电势
2
a a a p a a D i l B N T
式中,Bp为一个极下气隙的平均磁通密度;l为导体在磁场中的长度;v为导体运动的线速度,或电枢圆周速度;n为电机转速;D为电枢铁心直径。

如果电枢总导体数为N,若一对电刷之间的并联支路数为2,则一对电刷所串联的导体数为N/2,这样,刷间电势为
3-39
在理想空载时,电动机转速为n0,电枢电压Ua和反电势Ea相等。

因此, 由式(1 - 39)可得
已知当电枢体积和导体直径不变的条件下,Nl的乘积近似不变。

所以,当电枢电压和气隙平均磁通密度相同时,理想空载转速n0和电枢铁心直径近似成反比。

即电枢直径越大,电动机理想空载转速就越低。

从以上分析可知,在其他条件相同时,如增大电动机直径,减少其轴向长度,就有利于增加电动机的转矩和降低空载转速。

这就是力矩电动机做成圆盘状的原因。

1.3.4 直流力矩电动机性能特点
1. 力矩波动小,低速下能稳定运行
力矩电动机重要性能指标之一是力矩波动,这是因为它通常运行在低速状态或长期堵转,力矩波动将导致运行不平稳或不稳定。

力矩波动系数是指转子处于不同位置时,堵转力矩的峰值与平均值之差相对平均值的百分数。

力矩波动的主要原因是由于绕组元件数、换向器片数有限使反电势产生波动,电枢铁心存在齿槽引起磁场脉动,以及换向器表面不平使电刷与换向器之间的滑动摩擦力矩有所变化等。

结构上采用扁平式电枢,可增多电枢槽数、元件数和换向器片数;适当加大电机的气隙,采用磁性槽楔、斜槽等措施,都可使力矩波动减小。

2. 机械特性和调节特性的线性度
在前面所述的直流电动机机械特性和调节特性是在励磁磁通不变的条件下得出的。

事实上,与直流发电机一样,电动机中同样也存在着电枢反应的去磁作用,而且它的去磁程度与电枢电流或负载转矩有关,它导致机械特性和调节特性的非线性。

为了提高特性的线性度,在设计直流力矩电动机时,把磁路设计成高度饱和,并采取增大空气隙等方法,使电枢反应的影响显著减小。

3. 响应迅速,动态特性好
由 1.8 节可知,决定过渡过程快慢的两个时间常数是机电时间常数τj和电磁时间常数τd。

虽然直流力矩电动机电枢直径大,转动惯量大,但由于它的堵转力矩很大,空载转速很低,力矩电动机的机电时间常数还是比较小的,这样,其电磁时间常数τd相对变大。

已知τd=La/Ra,其中电枢绕组电感La主要取决于电枢绕组的电枢反应磁链。

可以证明,增加极对数可以减少电枢反应磁链。

所以,为减小电磁时间常数,提高力矩电机的快速反应能力,采用了多极结构,如图1 -28 所示。

此外,力矩电动机的饼式结构有利于将电动机的轴直接套在短而粗的负载轴上,从而大大提高了系统的耦合刚度。

4. 峰值堵转转矩和峰值堵转电流
因为电枢磁场对主磁场的去磁作用随电枢电流的增加而增加,故而峰值堵转电流是受磁钢去磁限制的最大电枢电流。

与其相对应的堵转转矩称为峰值堵转转矩,它是力矩电机最大的堵转转矩。

需要指出,由于电机定子上装有永久磁钢,所以在拆装电机时,务必使定子磁路处于短路状态。

即取出转子之前,应先用短路环封住定子,再取出转子,否则, 永久磁钢将失磁。

如果使用中发生电枢电流超过峰值堵转电流,使电机去磁,并导致堵转转矩不足时,则必须重新充磁。

相关主题