电控悬架系统控制原理与检修
摘要近年来,我国汽车工业发展飞速,许多新技术在汽车上得到应用,满足了人们对汽车安全性、舒适性越来越高的要求。
随着汽车电子技术以及高速公路飞速发展的同时,各汽车厂家相继开发了电控悬架系统以提高汽车性能。
由于电控悬架的应用数量不断增加,使电控悬架的维护逐渐被人们重视,但由于普及速度太快,致使对于电控悬架这方面的维护比较欠缺,本篇阐述了电控悬架的结构原理及检修。
关键词电控悬架;控制原理;检修
1 电控悬架概述(自适应阻尼悬挂系统ADS)
传统悬架的弹簧刚度是固定的,减振器阻尼也是确定的,不能同时满足良好的乘坐舒适性和操纵稳定性,无法满足现代社会的需求。
对于传统悬架,如果悬架刚度低,那么悬架的平顺性好,但会造成汽车在行驶过程中产生横摆和纵摇,使汽车行驶稳定性降低,增加了驾驶危险性,不利于安全行车。
如果只是单方面降低悬架刚度,而不改变减振器阻尼,地面冲击力还是会通过减振器传到车身,也会影响汽车乘坐的舒适性[1]。
反之,悬架刚度高,汽车操纵稳定性好但乘坐舒适性变差。
因此,悬架弹簧刚度控制和减振器阻尼控制在设计的时候最好能随路况改变,才能使汽车的乘坐舒适性和操纵稳定性得到兼顾。
这便有了电控悬架系统,它能使车身高度,悬架刚度,减振器阻尼的大小随汽车的负载、速度及路面状况等行驶条件的变化而自动调节。
电控悬架通过采用电子技术控制,使车辆能提高汽车乘坐舒适性和同时提高汽车操纵稳定性,也能使两者在各种行驶条件下达到最佳的组合。
2 电控悬架系统的功能和控制过程
2.1 电控悬架功能
电控悬架系统的汽车能够根据本身的负载情况、行驶状态和路面情况等,主动地对悬架弹簧刚度和减振器阻尼调整、车身高度调整、高车速控制、急加速时车身的“后仰”控制(车尾下蹲)、制动时的车身的“点头”控制(车头下沉)、转向时的车身的“侧倾”控制、坏路面控制和路面感应半主动控制等。
2.2 主要组成
目前,电控空气悬架在高级轿车、客车上应用较为广泛,主要由传感器(转向传感器、车高传感器、车速传感器、节气门位置传感、加速度传感器)、电控悬架ECU 和执行器(压缩机控制继电器、空气压缩机排气阀、空气弹簧进/排气电磁控制阀、模式控制继电器)等组成。
根据悬架车身高度、车速、转向和制动等传感信号,由ECU控制电磁式或步进电机执行器,改变悬架的特性,以适应各种复杂的行驶工况对悬架特性的不同要求。
[2]
2.3 电控悬架主要控制过程
ECU接收由车速传感器、转向传感器、加速度传感器和汽车高度传感器传来的信息,计算并控制弹簧刚度、减震器阻尼力和车身高度,具体包括防“点头”控制、防“侧倾”控制、防“下坐”控制、坏路控制、高车速控制和车身高度控制等。
(1)防“点头”控制
该控制用于防止汽车在制动时过量的“点头”。
一般是汽车高速行驶时突然制动时发生的现象,可以分别用制动灯开关和汽车高度传感器检测制动状况和前倾状况。
如果判断为汽车处于紧急制动时自动地将弹簧刚度增加,使在正常行驶条件下时的弹簧刚度的“中”设置变为“硬”设置,当不再需要时则恢复到一般状态的设置。
一般在松开制动踏板1s后这一控制被取消,悬架执行器恢复至原来的减振阻尼力和弹簧刚度。
[3]
(2)防“侧倾”控制
该控制可在汽车转弯时和S形弯路上抑制车辆的侧倾。
当汽车紧急转向时,应由正常行驶的“中”刚度转换为“硬”刚度,以防止车辆产生侧倾。
当转向盘恢复至正前方位置约2s后,悬架ECU取消这一控制,悬架恢复至原来的减振阻尼力和弹簧刚度。
(3)防“下坐”控制
该控制可在汽车起步或突然加速时抑制汽车后部的“下坐”。
悬架ECU通过节气门位置的变化程度判断汽车是否在起步或者急加速,如果是,则通过使悬架执行器动作把减震器阻尼力和弹簧刚度设置到“硬”状态。
从而抑制汽车起步或急加速时产生“下坐”现象。
这一控制约在2s后或是车速达到预定值时取消。
(4)坏路控制
该控制可抑制汽车在不平道路上行驶时发生的碰底、俯仰和跳振,改善乘坐的舒适性。
可根据汽车前后高度的变化分别对前后轮单独进行。
当左前或右前高度传感器检测到路面不平整时,悬架ECU将减振阻尼力设置为“中”,弹簧刚度设置为“硬”;若检测到路面很不平整时,悬架ECU将减振阻尼力和弹簧刚度均设置为“硬”。
但当车速低于10km/h时,不再进行这一控制。
(5)高车速控制
该控制可在汽车高速行驶时改善行驶的稳定性和可控制性。
当车速在140km/h以上,悬架ECU将减振阻尼力和弹簧刚度分别设置到“中”和“硬”位置,以提高汽车稳定性。
当车速降至120km/h以下时,悬架ECU使悬架执行器恢复至原来的设置。
(6)车身高度控制
当悬架ECU检测到汽车高度变化时,通过控制排气电磁阀及空气压缩机的动作,调节气缸内的空气压缩量,使汽车高度保持恒定。
不管车内乘员人数和装载质量如何变化,电控悬架都能控制车身高度,使其保持恒定。
3 电控悬架系统的检修
在对电控悬架系统进行维修与诊断故障时,一般首先要进行自诊断系统检测,然后进行功能检查与调整。
3.1 自诊断系统
当维修人员需要进行电控悬架系统的故障自诊断测试,读取ECU中存储的故障码时,首先要进入故障自诊断状态。
如果自诊断系统显示正常代码,可是汽车悬架系统故障仍然出现,此时就应该根据故障的现象进行人工判断排除。
3.2 功能检查与调整
(1)车辆高度功能检查
通过操作高度控制开关来检查。
①检查胎压是否正常。
②检查车身高度。
③起动发动机,将高度控制开关从NORM位置转到HIGH位置,高度的变化量应为10~30mm,从操纵开关到压缩机启動约需2s,从压缩机启动到完成高度调整所需的时间20~40s。
④使车辆处于“HIGH”高度调整状态,起动发动机,并将高度控制开关从HIGH位置切换至NORM位置。
汽车车身高度的变化量应为10~30mm,从操作控制开关到排气约需2s,从开始排气到完成高度调整所需的时间20~40s。
(2)安全阀检查
当压缩机工作时,检查安全阀是否能工作。
①将点火开关转到ON位置,连接高度控制连接器的两端子,使压缩机工作。
②等压缩机工作一段时间后,检查安全阀是否放气。
若不放气,应检查压缩机、安全阀是否工作不良以及管路是否漏气。
③将点火开关转至OFF位置,清除故障代码。
(3)管路漏气检查[4]
①将高度控制开关置于HIGH位置,使车辆高度升高,使发动机熄灭。
②在软、硬管连接处涂抹肥皂水检查是否有漏气现象。
除了以上的检查,还有车身高度的检查与调整、指示灯的检查、检查输入信号、电控悬架电路故障的检查、车身高度传感器电路的故障检查、悬架控制执行器电路的故障检查等。
4 总结
本文主要介绍了汽车电控悬架的重要性、功能和主要控制过程及简单的检修。
电控主动悬架性能优越,由于成本原因还只能成为高级轿车和豪华客车的装备。
采用新型电控技术,研究和开发一类控制有效、能耗低、造价合理的无级可调阻尼减振器和算法简单有效地控制策略将是主动悬架走向大众的必经之路。
由于每种车型的电子悬系统具体结构不尽相同,特别是采用不同的动力源系统时,其机理不同,因此具体的检修方法和步骤会有所不同。
无论其结构怎样变化,都是从基础的结构上发展过来的,因此,主要掌握其基本原理和基本的维修技术,对于进一步熟练掌握其维修技术并不困难。
参考文献
[1] 黄松.丰田凌志LS400轿车的故障自诊断系统[J].汽车维护与修理,1998 (2).
[2] 李春明.现代汽车底盘技术[M].北京:北京理工大出版社,2002.
[3] 吴际璋.当代汽车电控系统结构原理与检修[M].北京:人民交通出版社,2001.
[4] 赵良红.汽车底盘电控技术[M]. 机械工业出版社,2012.06.。