脂肪酸定义:一类长链的羧酸。
可能呈饱和(没有双键)或不饱和(携有双键)。
一般多为直链,有的亦会出现支链。
脂肪酸结构式脂肪酸(fatty acid),是指一端含有一个羧基的长的脂肪族碳氢链,是有机物,通式是C(n)H(2n+1)COOH,低级的脂肪酸是无色液体,有刺激性气味,高级的脂肪酸是蜡状固体,无可明显嗅到的气味。
脂肪酸是最简单的一种脂,它是许多更复杂的脂的组成成分。
脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。
简介 脂肪酸是由碳、氢、氧三种元素组成的一类化合物,是中性脂肪、磷脂和糖脂的主要成分。
脂肪酸根据碳链长度的不同又可将其分为短链脂肪酸( short chain fatty acids, SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸( volatile fatty acids, VFA);中链脂肪酸(Midchain fatty acids,MCFA),指碳链上碳原子数为6-12的脂肪酸,主要成分是辛酸(C8)和癸酸(C10);长链脂肪酸(Longchain fatty acids,LCFA),其碳链上碳原子数大于12。
一般食物所含的脂肪酸大多是长链脂肪酸。
脂肪酸根据碳氢链饱和与不饱和的不同可分为三类,即:饱和脂肪酸(saturated fatty acids,SFA),碳氢上没有不饱和键;单不饱和脂肪酸(Monounsaturated fatty acids,MUFA),其碳氢链有一个不饱和键;多不饱和脂肪(Polyunsaturated fatty acids,PUFA),其碳氢链有二个或二个以上不饱和键。
富含单不饱和脂肪酸和多不饱和脂肪酸组成的脂肪在室温下呈液态,大多为植物油,如花生油、玉米油、豆油、坚果油(即阿甘油)、菜子油等。
以饱和脂肪酸为主组成的脂肪在室温下呈固态,多为动物脂肪,如牛油、羊油、猪油等。
但也有例外,如深海鱼油虽然是动物脂肪,但它富含多不饱和脂肪酸,如20碳5烯酸(EPA)和22碳6烯酸(DHA),因而在室温下呈液态。
分类前言 自然界约有40多种不同的脂肪酸,它们是脂类的关键成分。
许多脂类的物理特性取决于脂肪酸的饱和程度和碳链的长度,其中能为人体吸收、利用的只有偶数碳原子的脂肪酸。
脂肪酸可按其结构不同进行分类,也可从营养学角度,按其对人体营养价值进行分类。
按碳链长度不同分类。
它可被分成短链(含4~6个碳原子)脂肪酸;中链(含8~14个碳原子)脂肪酸;长链(含16~18个碳原子)脂肪酸和超长链(含20个或更多碳原子)脂肪酸四类。
人体内主要含有长链脂肪酸组成的脂类。
不饱和脂肪酸按饱和度分类 它可分为饱和与不饱和脂肪酸两大类。
其中不饱和脂肪酸再按不饱和程度分为单不饱和脂肪酸与多不饱和脂肪酸。
单不饱和脂肪酸,在分子结构中仅有一个双键;多不饱和脂肪酸,在分子结构中含两个或两个以上双键。
随着营养科学的发展,发现双键所在的位置影响脂肪酸的营养价值,因此现在又常按其双键位置进行分类。
双键的位置可从脂肪酸分子结构的两端第一个碳原子开始编号。
目前常从脂肪酸 ,并以其第一个双键出现的位置的不同分别称为ω-3族、ω-6族、ω-9族等不饱和脂肪酸,这一种分类方法在营养学上更有实用意义。
按营养角度分类 非必需脂肪酸是机体可以自行合成,不必依靠食物供应的脂肪酸,它包括饱和脂肪酸和一些单不饱和脂肪酸。
而必需脂肪酸为人体健康和生命所必需,但机体自己不能合成,必须依赖食物供应,它们都是不饱和脂肪酸,均属于ω-3族和ω-6族多不饱和脂肪酸。
过去只重视ω-6族的亚油酸等,认为它们是必需脂肪酸,目前比较肯定的必需脂肪酸只有亚油酸。
它们可由亚油酸转变而成,在亚油酸供给充裕时这两种脂肪酸即不至缺乏。
自发现ω-3族脂肪酸以来,其生理功能及营养上的重要性越采越被人们重视。
ω-3族脂肪酸包括麻酸及一些多不饱和脂肪酸,它们不少存在于深海鱼的鱼油中,其生理功能及营养作用有待开发与进一步研究。
必需脂肪酸不仅为营养所必需,而且与儿童生长发育和成长健康有关,更有降血脂、防治冠心病等治疗作用,且与智力发育、记忆等生理功能有一定关系。
组成 饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。
不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。
必需脂肪酸(essential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,如亚油酸,亚麻酸。
三脂酰苷油(triacylglycerol):又称为甘油三酯。
一种含有与甘油脂化的三个脂酰基的酯。
脂肪和油是三脂酰甘油的混合物。
脂肪酸分离设备磷脂(phospholipid):含有磷酸成分的脂。
如卵磷脂,脑磷脂。
鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。
鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。
鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。
鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。
卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。
脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。
脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。
功能 脂肪酸(fatty acid)具有长烃链的羧酸。
通常以酯的形式为各种脂质的组分,以游离形式存在的脂肪酸在自然界很罕见,最普通的脂肪酸见下表。
大多数脂肪酸含偶数碳原子,因为它们通常从2碳单位生物合成。
高等动、植物最丰富的脂肪酸含16或18个碳原子,如棕榈酸(软脂酸)、油酸、亚油酸和硬脂酸。
动植物脂质的脂肪酸中超过半数为含双键的不饱和脂肪酸,并且常是多双键不饱和脂肪酸。
细菌脂肪酸很少有双键但常被羟化,或含有支链,或含有环丙烷的环状结构。
某些植物油和蜡含有不常见的脂肪酸。
不饱和脂肪酸必有1个双键在C(9)和C(10)之间(从羧基碳原子数起)。
脂肪酸的双键几乎总是顺式几何构型,这使不饱和脂肪酸的烃链有约30°的弯曲,干扰它们堆积时有效地填满空间,结果降低了范德华相互反应力,使脂肪酸的熔点随其不饱和度增加而降低。
脂质的流动性随其脂肪酸成分的不饱和度相应增加,这个现象对膜的性质有重要影响。
饱和脂肪酸是非常柔韧的分子,理论上围绕每个C—C键都能相对自由地旋转,因而有的构像范围很广。
但是,其充分伸展的构象具有的能量最小,也最稳定;因为这种构象在毗邻的亚甲基间的位阻最小。
和大多数物质一样,饱和脂肪酸的熔点随分子重量的增加而增加。
动物能合成所需的饱和脂肪酸和亚油酸这类只含1个双键的不饱和脂肪酸,含有2个或2个以上双键的多双键脂肪酸则必须从植物中获取,故后者称为必需脂肪酸,其中亚麻酸和亚油酸最重要。
花生四烯酸从亚油酸生成。
花生四烯酸是大多数前列腺素的前体,前列腺素是能调节细胞功能的激素样物质。
脂肪酸可用于丁苯橡胶生产中的乳化剂和其它表面活性剂、润滑剂、光泽剂;还可用于生产高级香皂、透明皂、硬脂酸及各种表面活性剂的中间体。
常用油脂的脂肪酸含量 油 脂 饱和脂肪酸 单不饱和脂肪 多不饱和脂肪酸 大豆油 14 25 61 花生油 14 50 36 玉米油 15 24 61 低芥酸菜子油 6 62 32 葵花子油 12 19 69 棉子油 28 18 54 芝麻油 15 41 44 棕榈油 51 39 10富含脂肪酸食物(8张) 猪 脂 38 48 14 牛 脂 51 42 7 羊 脂 54 36 10 鸡 脂 31 48 21 深海鱼油 28 23 49脂肪酸的β-氧化过程前言 肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。
此过程可分为活化,转移,β-氧化共三个阶段。
脂肪酸的活化 和葡萄糖一样,脂肪酸参加代谢前也先要活化。
其活化形式是硫酯——脂肪酰CoA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。
活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。
? 脂酰CoA合成酶又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。
胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化。
脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体转运,这一载体就是肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸。
长链脂肪酰CoA和肉毒碱反应,生成辅酶A和脂酰肉毒碱,脂肪酰基与肉毒碱的3-羟基通过酯键相连接。
催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl transferase)。
线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。
酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。
位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA则进入线粒体基质,成为脂肪酸β-氧化酶系的底物。
长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。
丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。
可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。
饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。
β-氧化的反应过程 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。
第一步脱氢(dehydrogenation)反应由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。
第二步加水(hydration)反应由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。
第三步脱氢反应是在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。
第四步硫解(thiolysis)反应由β-酮硫解酶催化,β-酮酯酰CoA 在α和β碳原子之间断链,加上一分子辅酶A生成乙酰CoA和一个少两个碳原子的脂酰CoA。