PE塑料的性能与应用PE即聚乙烯,是一种具有多种结构和特性的聚合物。
它主要分为低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)、及特殊性能的超高分子量聚乙烯、低相对分子质量聚乙烯、高相对分子质量高密度聚乙烯、极低密度聚乙烯等。
一般来说相对密度低于0.920的聚乙烯,通常称为低密度聚乙烯;相对密度等于或大于0.940的聚乙烯称为高密度聚乙烯;相对密度在0.926~0.940范围内的聚乙烯称为中密度聚乙烯。
由PE的分类上就能看出,密度是关系着PE塑料性能差异的主要指标,其次是相对分子质量,而密度又是树脂结晶度和分子线型结构不同造成的。
线性结构的PE,结晶度高,密度大,熔融温度、硬度、屈服强度、弹性模量也高。
尽管PE分子间的力不大,但主要因结晶度高,分子便堆砌紧密而强度增大。
相反,支链度大的PE结晶度较小,则密度较低,可延伸性与韧性较大,即为柔韧性材料。
相对分子质量及其分布会直接影响结晶度,进而影响一系列性能,如:强度、硬度、韧性、耐磨性、耐化学药品和老化及耐低温脆折性等越高,而断裂伸长率降低。
相对分子质量分布窄,对韧性和低温脆性却有所提高。
而耐长期载荷变形,耐环境应力开裂性则下降。
所以,相对分子质量分布的宽窄对PE制品的种类与使用性能也有密切关系。
另外,熔融指数是聚乙烯熔体流动性的定量指标,也是反映聚乙烯分子量大小的一个标志。
一般情况下,PE的熔融指数越高,其分子量越低;反之PE的熔融指数越低,其分子量越高。
PE的熔融指数对其加工影响较大。
熔融指数大,则流动性就好,对注射成型有利,但对于直接挤出吹塑来说,则不希望熔融指数过高,特别是HDPE,熔融指数大,型坯易产生下坠,影响型坯的正常成型。
若要吹塑大型制品时,应该选用高分子量高密度聚乙烯(代号为HMWHDPE),其重均分子量在30~50万范围内,其分子量不仅明显地高于一般HDPE(重均分子量在15~20万之间),而且分子量分布较宽,其熔体张力大,采用直接挤出吹塑成型时,大型制件的型坯也不易产生下坠问题。
采用HMWHDPE制得的塑料制品还具有良好的耐冲击性、耐蠕变性以及耐应力开裂性。
⒈常用聚乙烯的性能介绍⑴低密度聚乙烯性能:LDPE为乳白色蜡状颗粒,它具有无毒、无味、无臭,是PE中最轻的品种,结晶度较低,为55﹪~65﹪熔体流动速率较宽,约为0.2~50g/10min,具有良好的柔韧性、延伸性、透明性、耐寒性,有优良的加工性、化学稳定性及透气性较好,电绝缘性能优异,但其机械强度、透湿性、耐老化性能较差及耐热性低于高密度聚乙烯。
⑵高密度聚乙烯的性能:HDPE为白色粉末或颗粒状,无毒、无味、无臭,与LDPE相比,支链较少,结晶度较高,密度较大,相对分子质量常为十几万到几十万,熔体流动速率范围较窄;具有较高的刚性和韧性,优良的机械性能和耐热性,还具有较好的耐溶剂性、耐蒸汽渗透性等。
①HDPE的各项性能见表1—4HDPE塑料可以采用挤出法、注塑法、挤出吹塑法、挤出压制法等方法成型。
产品用途广泛。
HDPE塑料的品种很多,可根据具体需要选用,可用于中空吹塑成型的国产HDPE材料较多,也较容易从市场购得。
在挤出吹塑成型中,HDPE常用来吹塑耐腐蚀的中小型各类容器和汽车中空配件等产品。
⑶中密度聚乙烯的性能:MDPE大分子链的支化程度及其性能在很多方面介于HDPE和LDPE之间。
它的密度和结晶度主要是由分子链中支链多少与长短不同决定的。
支链多而长,密度和结晶度下降,具有较好的柔韧和低温特性,但拉伸强度和硬度、耐热性等不如HDPE..但耐环境应力开裂性和强度长期保持性较好。
⑷线性低密度聚乙烯:LLDPE是乙烯与少量α-烯烃共聚而制得的一种高聚物,其分子结构与普通的LDPE(长链长分支)、HDPE(长链少分支)不同,为长链上附有若干短的分支的结构,分支的长短与数量决定于共聚单体的种类与用量。
因此,分支有较强的规律性,且LDPE分子量的分布相对要狭窄一些。
因此,即使LLDPE和LDPE的结晶度相当,密度相近,性能上却显示出较大的差异。
由于普通商品级LLDPE分子量分布比较狭窄,采用直接挤出吹塑法吹制中空容器时,型坯易下坠,难以制得性能优良的产品,因此当采用直接挤出吹塑法制LLDPE中空容器时,应选用分子量分布较宽的、吹塑专用级LLDPE树脂。
⑸HMWHDPE塑料:HMWHDPE(High Molecular Weight High Density Polyethylene)称为高相对分子质量高密度聚乙烯,它是PE类的新品种之一,有均聚物与共聚物之分,可以用淤浆法和气相法来生产。
聚合反应在低压(0.48~3.1MPa)、低温(80~110℃)和过渡金属催化剂存在下进行,所用催化剂有齐格勒型或以铬氧化物为基础的菲利浦型。
共聚单体多为1-丁烯、1-辛烯等α-烯烃。
HMWHDPE的重均相对分子质量为(2~5)x105,共聚物的密度为0.941~0.965g/cm³,而一般的HDPE的密度为0.941~0.954g/cm³。
共聚物的密度与共聚物单体的关系密切,其结晶度与物理特性也不同于均聚物。
HMWHDPE具有优良的耐环境应力开裂性、冲击强度、拉伸强度、熔体强度、良好的刚性、高防潮性、耐磨性、化学稳定性和冲击性。
①HMWHDPE基本特性及影响因素见表5-5HMWHDPE可以用挤出和吹塑法成型,在挤出成型时,挤出机需要设计强制冷却和进料沟槽的进料段,以提高生产效率,防止聚合物降解并提高材料的进料性能,并且可使挤出量提高60%以上。
HMWHDPE在大型工业吹塑件的成型中,主要用来制作容积200L以上的大型中空容器、塑料托盘、大型储水罐、储油罐等。
近几年国内各石化企业开发生产出了多种牌号的HMWHDPE,并且每年都有新的牌号材料出现,购买时主要应根据需要及市场的情况。
国产牌号主要有:DMDY1158,7000F,8200B等。
②国产HMWHDPE的性能参数国产HMWHDPE牌号及性能参数见表6②ESCR为耐环境应力开裂指数。
⒉聚乙烯的其它特性各种牌号的聚乙烯,其性能因组成、结构、分子量及分布等的不同而不尽相同。
但就聚乙烯类塑料而言,它们之间存在着许多共同的特点,正是这些基本特征,使它们能够作为塑料中空容器的主要材料,在实践中得到了广泛的应用。
⑴力学性能PE具有良好而均衡的机械性能,除了塑料花专用料等高流动性PE之外,通常PE的拉伸强度均在10MPa以上,断裂伸长率可达500%或更高。
PE的强度与分子结构之间有密切的关系。
高密度聚乙烯大分子结构规整性强,结晶度高,强度较大。
一般高密度聚乙烯的拉伸强度等性能均明显高于低密度聚乙烯,其中拉伸强度可达低密度聚乙烯的2倍以上,但高密度聚乙烯的冲击强度较低密度聚乙烯要低。
⑵耐化学腐蚀性PE是耐化学腐蚀性最好的塑料之一,它的耐化学腐蚀性可简要归纳如下:①PE耐绝大多数的稀酸,通常也不受各种盐及其溶液的侵蚀,但会受氧化型浓酸破坏,在高温下还会受氧化剂类物质的侵蚀;②PE通常不受醇、醛、酮以及酯类物质的腐蚀;但在室温下会因为芳烃、脂芳烃、卤化烃的作用而引起一定程度的溶胀,LDPE在60℃以上、HDPE在80℃以上溶解作用也增大;PE在常温下受卤素的影响较小,但高温下会作用加速;③PE对油类约有吸收,如矿物油、香精油会通过PE材料散逸出去;④PE制品在脂肪及芳香烃、醛、酮、醇、浓硫酸、去污剂及皂、油及脂肪、碱金属的氢氧化物等应力开裂剂的作用下可能会产生应力开裂。
⑶耐候性PE在紫外线、高能辐射的作用下,会在空气中发生降解,导致变色、表面龟裂直至脆化、失去强度而丧失使用价值。
因此,对于室外应用或者经受阳光直射的PE中空容器,应当使用耐候性配方,即在PE主料中加入适量的紫外线吸收剂、遮光剂(光屏蔽剂)等助剂,以防紫外光的危害。
若PE中空容器外观允许呈黑色,可在PE中配入1﹪~2﹪的碳黑(碳黑是一种价廉物美的紫外光屏蔽剂),使其耐候性大幅度提高。
⑷阻隔性在中空制品类塑料包装容器的多数应用中,阻隔性能往往是十分重要的。
在对各种物质的阻隔性中,对氧、二氧化碳、氮气、有机溶剂的透过性能以及对水和水蒸气的透过性能,这些在实际应用中特别重要,它们能直接影响到塑料容器对所包装物品的保护效果。
一般地讲,PE的阻隔性能随着密度的增大而改善,也就是说高密度聚乙烯比低密度聚乙烯的阻隔性能要好,但是对于不同物质的阻隔性能相差极大。
PE对水蒸气的透过有极佳的阻隔性能,特别是高密度聚乙烯,是阻隔水蒸气透过的最好的塑料之一。
PE对氧、二氧化碳、氮以及众多的有机溶剂,特别是脂肪烃、芳烃类等的阻隔性能较差。
因此需阻氧保存的物品、脂肪烃、芳烃及其溶液等物质,切忌采用PE类中空容器包装。
⑸卫生性能PE本身无毒、无味,可直接接触食品、药品等物质。
但是在用于食品、药品包装时,对包装的加工过程中切忌配入对人体有害的塑料助剂,必须按照国家卫生标准的要求生产。
⒊ PE的吹塑加工成型条件对产品性能的影响以及注意事项⑴成形温度实际应用中的PE吹塑成型温度因PE的品种不同而异,通常HDPE为170℃~210℃,LDPE 为150℃~190℃。
吹塑大型制品一般采用较高的温度,而吹塑小型制品一般采用较低的温度,但需注意如果成型温度过低,容易产生型坯鲨鱼皮现象或者熔体破裂;温度过高则会出现型坯下坠,导致制品壁厚明显不均。
因此,在吹塑制品过程中,应随时观察型坯的质量,发现型坯不正常需及时调整温度。
⑵挤出速度切忌过渡提高挤出速度和降低成型温度,否则容易引起型坯产生鲨鱼皮及熔体破裂的现象,同时产生较大的离模膨胀,型坯的壁厚增大,导致制品的质量增大。
因此提高挤出速度应以不产生鲨鱼皮和熔体破裂为前提,同时还需要调节模头的芯棒与口模调节环间的距离以维持制品的质量(重量)在标准范围之内。
⑶壁厚调节壁厚调节包括周向(径向)壁厚调节与轴向壁厚调节。
通过对挤出型坯的周向(径向)、轴向壁厚调节,就可实现对PE吹塑中空容器的壁厚控制。
普通的口模一般通过调节螺栓移动口模调节圈在水平面上的位置,使型坯壁厚趋于均匀,不产生弯曲、平行向下移动。
纵向调节由型坯壁厚程序控制系统来完成。
在型坯挤出过程中,按预置程序,通过伺服阀驱动液压缸,使模头的芯棒上下移动以调节口模间隙,从而调节型坯壁厚的轴向分布。
⑷模具温度模具温度对聚乙烯中空吹塑制品的外观、成型收缩率及强度均有影响,此外,模具温度还影响吹塑成型的周期。
模具温度高,PE吹塑制品的外观可得到改善,但是尺寸稳定性下降,机械强度(特别是抗冲击强度)下降,生产周期延长,生产效率下降;模具温度过高,还可能产生制品在截坯夹断部位过薄的弊端,因此适当降低模具的温度是有利的。
但是模具温度过低也会出现一些问题,如锁模时型坯与模具接触部分急剧冷却,型坯还未达到制品设计形状之前就难以延伸了,可能导致制品的厚度不均。