当前位置:文档之家› 格林函数()

格林函数()

§2.4 格林函数法 解的积分公式在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。

格林函数,又称点源影响函数,是数学物理中的一个重要概念。

格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。

知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。

一、 泊松方程的格林函数法为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。

设u (r )和v (r )在区域 T 及其边界上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分⎰⎰∑⋅∇Sd v u化成体积积分.)(⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=∇⋅∇=⋅∇∑TTTvdV u vdV u dV v u S d v u(12-1-1)这叫作第一格林公式。

同理,又有.⎰⎰⎰⎰⎰⎰⎰⎰∇⋅∇+∆=⋅∇∑TTvdV u udV v S d u v(12-1-2)(12-1-1)与(12-1-2)两式相减,得,)()(⎰⎰⎰⎰⎰∆-∆=⋅∇-∇∑TdV u v v u S d u v v u亦即.)(⎰⎰⎰⎰⎰∆-∆=⎪⎭⎫ ⎝⎛∂∂-∂∂∑T dV u v v u dS n u v n vu(12-1-3)n ∂∂表示沿边界 的外法向求导数。

(12-1-3)叫作第二格林公式。

现在讨论带有一定边界条件的泊松方程的求解问题。

泊松方程是)( ),(T r r f u ∈=∆(12-1-4)第一、第二、第三类边界条件可统一地表为),( M u n u ϕβα=⎥⎦⎤⎢⎣⎡+∂∂∑(12-1-5)其中(M )是区域边界上的给定函数。

=0, ≠0为第一类边界条件,≠0,=0是第二类边界条件,、 都不等于零是第三类边界条件。

泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。

为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。

§5.3中介绍的函数正是描述一个单位正点量的密度分布函数。

因此,若以v (r ,r 0)表示位于r 0点的单位强度的正点源在r 点产生的场,即v (r ,r 0)应满足方程).() ,(00r r r r v -=∆δ(12-1-6)现在,我们利用格林公式导出泊松方程解的积分表示式。

以v (r ,r 0)乘(12-1-4),u (r )乘(12-1-6),相减,然后在区域T 中求积分,得.)( )(0⎰⎰⎰⎰⎰⎰⎰⎰⎰--=∆-∆TTTdV r r u vfdV dVv u u vδ(12-1-7)应用格林公式将上式左边的体积分化成面积分。

但是,注意到在r =r 0点,v 具有 函数的奇异性,格林公式不能用。

解决的办法是先从区域T 中挖去包含r 0的小体积,例如半径为 的小球K (图12-1), 的边界面为。

对于剩下的体积,格林公式成立,.)(⎰⎰⎰⎰⎰⎰⎰∑∑-⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂=∆-∆εεdS n v u nuv dS n v u n u v dV v u u v K T (12-1-8) 把(12-1-8)代入挖去K 的(12-1-7),并注意r ≠r 0,故(r -r 0)=0,于是.⎰⎰⎰⎰⎰⎰⎰-∑∑=⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂εεKT vfdV dS n v u n uv dS n v u n u v (12-1-9)当10<<-r r ,方程(12-1-6)的解 v (r ,r 0)—→ 位于点r 0而电量为 -的点电荷的静电场中的电势,即-1/40r r -。

令 →0,得 (12-1-9)右边—→,⎰⎰⎰TvfdV左边的0 4141 02→∂∂-=Ω∂∂-=Ω⎪⎭⎫ ⎝⎛-∂∂=∂∂=∑∑∑⎰⎰⎰⎰⎰⎰r r n ud nu d n u dS n u vεεεεπεεεπ左边的).( 141141022r u d r r u dS r r u dS nv u -=Ω⋅-=⎪⎭⎫ ⎝⎛-∂∂-=∂∂⎰⎰⎰⎰⎰⎰∑∑∑εεεππ(12-1-10)这样,(12-1-7)成为. ) ,( )( )( ) ,( )() ,()(0000⎰⎰⎰⎰⎰∑⎥⎦⎤⎢⎣⎡∂∂-∂∂-=dS n r r v r u n r u r r v dVr f r r v r u T(12-1-11) (12-1-11)称为泊松方程的基本积分公式。

(12-1-11)将(12-1-4)的解u 用区域 T 上的体积分及其边界上的面积分表示了出来。

那么,能否用(12-1-11)来解决边值问题呢?我们看到,(12-1-11)中需要同时知道u 及 n u∂∂ 在边界 上的值,但是,在第一边值问题中,已知的只是 u 在边界 上的值;在第二边值问题中,已知的只是 n u∂∂ 在边界上的值。

在第三边值问题中,已知的是u 和 n u∂∂的一个线性关系在边界 上的值,三类边界条件均未同时分别给出u 和 n u∂∂ 的边界 上的值。

因此,我们还不能直接利用(12-1-11)解决三类边值问题。

其实,这里距离问题的解决已经很近了。

原来,对于函数v (r ,r 0),我们还只考虑其满足方程(12-1-6)。

如果我们对v (r ,r 0)提出适当的边界条件,则上述困难就得以解决。

对于第一边值问题,u 在边界 上的值是已知的函数 (M )。

如果要求v 满足齐次的第一类边界条件,0=∑v(12-1-12)则(12-1-11)中含 n u ∂∂ 的一项等于零。

从而不需要知道 n u∂∂ 在边界 上的值。

满足方程(12-1-6)及边界条件(12-1-12)的解称为泊松方程第一边值问题的格林函数,用G (r ,r 0)表示。

这样,(12-1-11)式成为.) ,()()() ,()(000⎰⎰⎰⎰⎰∑∂∂+=dS n r r G r dV r f r r G r u Tϕ (12-1-13)对于第三边值问题,令v 满足齐次的第三类边界条件,.0 =⎥⎦⎤⎢⎣⎡+∂∂∑v n v βα(12-1-14)满足方程(12-1-6)及边界条件(12-1-14)的解称为泊松方程第三类边值问题的格林函数,也用G (r ,r 0)表示。

以G (r ,r 0)乘(12-1-5)式两边,得. ϕβαG u G n u G =⎥⎦⎤⎢⎣⎡+∂∂∑又以 u 乘(12-1-14),并以 G 代替其中的 v ,得.0 =⎥⎦⎤⎢⎣⎡+∂∂∑u G n G u βα将这两式相减,得. ϕαG n G u n u G =⎥⎦⎤⎢⎣⎡∂∂-∂∂∑将此式代入(12-1-11),得.)() ,(1)() ,()(000⎰⎰⎰⎰⎰∑-=dS r r r G dV r f r r G r u Tϕα(12-1-15)至于第二边值问题,表面看来,似乎可以按上述同样的办法来解决,即令G 为定解问题),(0r r G-=∆δ(12-1-16)0=∂∂∑n G(12-1-17)的解,而由(12-1-11)得到.)() ,()() ,()(000⎰⎰⎰⎰⎰∑-=dS r r r G dV r f r r G r u Tϕ (12-1-18)可是,定解问题(12-1-16)~(12-1-17)的解不存在。

这在物理上是容易理解的:不妨把这个格林函数看作温度分布。

泛定方程(12-1-16)右边的 函数表明在所围区域 T 中有一个点热源。

边界条件(12-1-17)表明边界是绝热的。

点热源不停地放也热量。

而热量又不能经由边界散发出去,T 里的温度必然要不停地升高,其分布不可能是稳定的。

这就需要引入推广的格林函数。

对于三维空间,,1)()()(000T V z z y y x x G ----=∆δδδ.0=∂∂∑n G式中V T 是T 的体积。

对于二维空间,,1)()(00T A y y x x G ---=∆δδ.0=∂∂∑n G式中 A T 是 T 的面积,方程右边添加的项是均匀分布的热汇密度,这些热汇的总体恰好吸收了点热源所放出的热量,不多也不少。

(12-1-13)和(12-1-15)的物理解释有一个困难。

公式左边u 的宗量r 0表明观测点在r 0,而右边积分中的f (r )表示源在r ,可是,格林函数G (r ,r 0)所代表的是r 0的点源在r 点产生的场。

这个困难如何解决呢?原来,这个问题里的格林函数具有对称性G (r ,r 0)=G (r 0,r ),将(12-1-13)和(12-1-15)中的r 和r对调,并利用格林函数的对称性,(12-1-13)成为,) ,()()() ,()(0000000⎰⎰⎰⎰⎰∑∂∂+=dS n r r G r dV r f r r G r u Tϕ (12-1-19)这就是第一边值问题解的积分表示式。

(12-1-15)成为,)() ,(1)() ,()(000000⎰⎰⎰⎰⎰∑-=dS r r r G dV r f r r G r u Tϕα(12-1-20)这就是第三边值问题解的积分表示式。

(12-1-19)和(12-1-20)的物理意义就很清楚了,右边第一个积分表示区域T 中分布的源f (r 0)在r 点产生的场的总和。

第二个积分则代表边界上的状况对r点场的影响的总和。

两项积分中的格林函数相同。

这正说明泊松方程的格林函数是点源在一定的边界条件下所产生的场。

现在来证明格林函数的对称性。

在 T 中任取两个定点r 1和r 2。

以这两点为中心,各作半径为的球面1和2。

从 T 挖去1和2所围的球K 1和K 2。

在剩下的区域T -K 1-K 2上,G (r ,r 1)和G (r ,r 2)并无奇点。

以u =G (r ,r 1),v =G(r ,r 2)代入格林公式(12-1-3)⎰⎰⎰⎰⎰--∑+∑+∑∆-∆=⎪⎭⎫ ⎝⎛∂∂-∂∂2121)(KK T dVu v v u dS n u v n vu由于G (r ,r 1)和G (r ,r 2)是调和函数,上式右边为零。

又由于格林函数的边界条件,上式左边⎰⎰∑=0。

这样.021=⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰⎰⎰∑∑dS n u v n vu dS n u v n v u令 →0,上式成为0-v (r 1)+u (r 2)-0=0,即G (r 1,r 2)=G (r 2,r 1)。

对于拉普拉斯方程,即(12-1-4)式右边的 f (r )≡0,这时,我们只要令(12-1-19)和(12-1-20)两式右边的体积分值等于零,便可得到拉普拉斯方程第一边值问题的解⎰⎰∑∂∂=0000) ,()()(dS n r r G r r uϕ(12-1-21)以及第三边值问题的解⎰⎰∑-=000)() ,(1)(dS r r r G r uϕα(12-1-22)我们看到,借助格林公式,也可利用格林函数方法得到齐次方程定解问题的解。

相关主题