当前位置:
文档之家› MATLAB有限元分析与应用
MATLAB有限元分析与应用
y = [E*A/L -E*A/L ; -E*A/L E*A/L];
2019/9/15
15
§3-2 线性杆元
2、MATLAB函数编写
2.2 整体刚度矩阵的形成
function y =LinearBarAssemble(K,k,i,j)
%LinearBarAssemble This function assembles the element stiffness
%
matrix k of the spring with nodes i and j into the
%
global stiffness matrix K.
%
This function returns the global stiffness matrix K
%
after the element stiffness matrix k is assembled.
0 15
U=K\F U=inv(K)*F
U= 0.1500
2019/9/15
0.2250
11
§2-1 弹簧元
5、实例计算分析应用
步骤6:后处理
U=[0;U]
U= 0
0.1500 0.2250
F=K*U
F= -15.0000 0.0000 15.0000
2019/9/15
u1=U(1:2); f1=SpringElementForces(k1,u1);
K(i,i) = K(i,i) + k(1,1);
K(i,j) = K(i,j) + k(1,2);
K(j,i) = K(j,i) + k(2,1);
K(j,j) = K(j,j) + k(2,2);
y = K;
2019/9/15
5
§3-1 弹簧元
3、MATLAB函数编写
3.3 节点载荷计算
function y = SpringElementForces(k,u)
L 总刚矩阵Βιβλιοθήκη n n结构方程: KU F
22
单元节点力: f ku
2019/9/15
14
§3-2 线性杆元
2、MATLAB函数编写
2.1 单元刚度矩阵的形成
function y = LinearBarElementStiffness(E,A,L)
%LinearBarElementStiffness This function returns the element
%LinearBarElementStresses This function returns the element nodal
%
stress vector given the element stiffness
%
matrix k, the element nodal displacement
%
vector u, and the cross-sectional area A.
0 200
UU12
F1 F2
200 U3 F3
已知边界条件: U1 0, F2 0, F3 15
100 100 0
100 300 200
0 200
0 U 2
F1 0
630000 U3 F3
已知边界条件: U1 0,U3 0.002, F2 10
420000 420000 0
420000 1050000 630000
0 0
630000
U2
F110
630000 0.002 F3
2019/9/15
20
§3-2 线性杆元
3、实例计算分析应用
步骤3:集成整体刚度矩阵
调用 function y = LinearBarAssemble(K,k,i,j)函数
n=3; K = zeros(n,n)
K= 000 000 000
K = LinearBarAssemble (K,k1,1,2)
2019/9/15 -200 200
8
§3-1 弹簧元
4、实例计算分析应用
步骤3:集成整体刚度矩阵
调用 function y = SpringAssemble(K,k,i,j)函数
n=3; K = zeros(n,n);
K= 000 000 000
K = SpringAssemble(K,k1,1,2)
第三章 MATLAB有限元分析与应用
§3-1 弹簧元 §3-2 线性杆元 §3-3 二次杆元 §3-4 平面桁架元 §3-5 空间桁架元
§3-6 梁元
2019/9/15
1
§3-1 弹簧元 1、有限元方法的步骤:
离散化域 形成单刚矩阵 集成整体刚度矩阵 引入边界条件 求解方程 后处理
2019/9/15
n=3;
K=zeros(n,n);
K=SpringAssemble(K,k1,1,2);
K=SpringAssemble(K,k2,2,3);
U=zeros(2,1);
F=[0;15];
K = K(2:3,2:3);
KK=K;
U=K\F
U=[0;U];
F=K*U;
u1=U(1:2);
f1=SpringElementForces(k1,u1)
f1 = -15.0000 15.0000
u2=U(2:3); f2=SpringElementForces(k2,u2);
f2 = -15.0000 15.0000
12
§3-1 弹簧元
5、实例计算分析应用
k1=SpringElementStiffness(100);
k2=SpringElementStiffness(200);
y = k * u;
2019/9/15
6
§3-1 弹簧元
4、实例计算分析应用
如图所示二弹簧元结构,假定k1=100kN/m,k2=200kN/m,P=15kN。 求:系统的整体刚度矩阵;
节点2、3的位移; 节点1的支反力; 每个弹簧的内力
解:
步骤1:离散化域
2019/9/15
7
§3-1 弹簧元
4、实例计算分析应用
%
stiffness matrix for a linear bar with
%
modulus of elasticity E, cross-sectional
%
area A, and length L. The size of the
%
element stiffness matrix is 2 x 2.
%SpringElementForces This function returns the element nodal force
%
vector given the element stiffness matrix k
%
and the element nodal displacement vector u.
%
k is assembled.
K(i,i) = K(i,i) + k(1,1);
K(i,j) = K(i,j) + k(1,2);
K(j,i) = K(j,i) + k(2,1);
K(j,j) = K(j,j) + k(2,2);
y 2019/9/15 = K;
16
§3-2 线性杆元
2、MATLAB函数编写
u2=U(2:3);
2019f/29/=15SpringElementForces(k2,u2)
13
§3-2 线性杆元
1、基本方程
线性杆元也是总体和局部坐标一致的一维有限单元,用线性函数描述
每个线性杆元有两个节点(node)
EA
单刚矩阵为: k
L
EA L
EA L
EA
y = k * u/A;
2019/9/15
18
§3-2 线性杆元
3、实例计算分析应用
如图所示二线性杆元结构,假定E=210MPa,A=0.003m^2,P=10kN, 节点3的右位移为0.002m。
求:系统的整体刚度矩阵; 节点2的位移; 节点1、3的支反力; 每个杆件的应力
解:
步骤1:离散化域
2019/9/15
19
§3-2 线性杆元 3、实例计算分析应用
步骤2:形成单元刚度矩阵
调用 function y = LinearBarElementStiffness(E,A,L)函数 k1=LinearBarElementStiffness(E,A,L1)
k2=LinearBarElementStiffness(E,A,L2)
%
matrix k of the linear bar with nodes i and j
%
into the global stiffness matrix K.
%
This function returns the global stiffness
%
matrix K after the element stiffness matrix
3.1 单元刚度矩阵的形成
function y = SpringElementStiffness(k)
%SpringElementStiffness This function returns the element stiffness %matrix for a spring with stiffness k. %The size of the element stiffness matrix is 2 x 2.