当前位置:
文档之家› 斜拉桥的总体布置构造施工及工程实例[详细]
斜拉桥的总体布置构造施工及工程实例[详细]
33
24
(3)多塔多跨式
图1-4 三塔四跨式斜拉桥
25
由于多塔多跨式斜拉桥(或悬索桥)的中间塔顶没有端锚索限制它 的变位,使结构柔性进一步增大,可能导致变形过大。
26
3 索塔布置
(1)索塔的形式:纵向、横向;斜拉桥个性,视觉效果
(a)
(b)
(c)
(d)
(e)
(f)
单柱式
(a)
(b)
A字型
(c)
纵桥向
32
5 主要结构体系
斜拉桥的结构体系,可以有以下几种不同的划分方式:
(1)按塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔 梁固结体系和刚构体系。
(2)按主梁的连续方式,有连续体系和T构体系等。 (3)按斜拉索的锚固方式,有自锚体系、部分地锚体系和地锚体系。 (4)按塔的高度不同,有常规斜拉桥和矮塔部分斜拉桥体系。
17
长沙洪山庙大桥
18
香港昂船洲大桥,全长1614米,主跨1018米,为圆形独柱分离流线型双箱斜拉桥,
塔高298米。大桥于2003年动工,2009年竣工。
19
斜拉桥:主梁、索塔和斜拉索
主梁:
一般采用混凝土结构、钢-混凝土组合结构、钢结构或钢和 混凝土混合结构;
索塔:
采用混凝土、钢-混凝土组合或钢结构;大部分1104,2012)成为全世界第三座跨度超过千米的
斜拉桥,全球主跨最长的斜拉桥。
13
( 286+560+560+560+286m ,2003年)
2003年建成的希腊Rion-Antirion桥(安蒂 里奥大桥)跨越科林斯海湾,水深达65米, 岩床深500米,2000年重现期的地震最大峰 加速度1.2g,半岛以每年8-11mm速度漂离大 陆,五跨连续全漂浮斜拉桥的抗震体系 (L=560m),可滑动的加筋土隔震基础 (2530m钢管桩加固,3m垫层)
德国Theodore-Heuss桥(1958年)
5
马拉开波桥(L=5×235m, 1962年),第一座混凝土斜拉桥
6
美国P-K桥(L=299m, 1978年),第一座密索体系混凝土斜拉桥
7
挪威Skarnsundet桥(L=530m,1992年)斯卡恩圣特桥,保持混凝土斜拉桥最大 跨径的记录。
8
斜拉索:
采用高强材料(高强钢丝或钢绞线)制成,或其他新材料(碳纤 维)等。
20
斜拉桥基本力学特点:
斜拉索的两端分别锚固在主梁和索塔上,将主梁的恒载和车辆荷载传递至索塔, 再通过索塔传至基础(地基)。
主梁在斜拉索的支承下,呈多跨弹性支承的连续梁受力,梁内弯矩大大地降低, 使主梁尺寸大幅度减小(梁高一般为跨度的1/50~1/200),减轻结构自重,增大了 桥梁的跨越能力(如图1-1)。高次超静定。
倒Y型
(d)
(e)
(f)
(g)
(h)
(i)
横桥向
图1-5 索塔形式布置示意图
27
(2)塔的高跨比
索塔的高度H决定着整个桥梁的刚度和经济性
图1-6 索塔高跨比范围
28
(1)索面位置
单索面
4 拉索布置
竖向双索面
斜向双索面、多索面
图1-7 索面布置
29
(2)索面形状
放射形
扇形
竖琴形
图1-8 斜拉索立面布置方式
14
Millau米洛高架桥
多跨连续高墩单索面斜拉桥(L=342m), 2#墩高245米,加90米塔高,总高343米。 流线形带风嘴桥面,3米高风障。顶推法 施工。
204+6×342+204m,2004年
15
K.C.鲁克桥(林同炎),岩锚索曲线梁斜拉桥,平曲线 R=458m—因故未建
16
鹿特丹的超现代伊拉斯缪斯大桥
上海杨浦大桥(L=602m,1993年),当时最大跨径的“钢-混”结 (叠)合梁斜拉桥
9
法国Normandy桥(L=856m,1995年) ,当时世界最大跨径的“钢-混” 混合梁斜拉桥
10
日本多多罗桥(L=890m,1999年),当时跨径最大的斜拉桥,为混 合梁斜拉桥。
11
江苏苏通(苏州-南通)大桥 (L=1088m,2008),目前世界第二
斜拉桥的总体布置、构 造、施工及工程实例
一 总体布置 二 斜拉桥构造 三 斜拉桥施工 四 工程实例
1
一 总体布置
1概 述 2 孔跨布局 3 索塔布置 4 拉索布置 5 结构体系
2
1 概述
斜拉桥的发展:
step1:稀索布置,主梁较高,主梁以受弯为主,拉索更换 不方便。 step2:中密索布置,主梁较矮,主梁承受较大轴力和弯矩。 step3:密索布置,主梁更矮,并广泛采用梁板式开口断面, 主梁承受轴力为主,弯矩为辅。
30
(a)辐射形
布置的斜拉索沿主梁为均匀分布,而在索塔上则集中于塔顶一 点。由于其斜拉索与水平面的平均交角较大,故斜拉索的垂直分力 对主梁的支承效果也大,但塔顶上的锚固点构造复杂;
(b)竖琴形
布置中的斜拉索成平行排列,在索数少时显得比较简洁,并可简化 斜拉索与索塔的连接构造,塔上锚固点分散,对索塔的受力有利,缺 点是斜拉索的倾角较小,索的总拉力大,故钢索用量较多。
里程碑式意义:
3
现代斜拉桥里程碑:
第一座现代化斜拉桥-瑞典Stromsund桥(斯特罗姆海峡桥),德国DEMAG 公司迪辛格设计(L=182.6m, 1955年)
4
1952年,德国莱昂哈特(Leonhardt)教授在世界上第一个设计出现代化斜拉桥 --德国杜塞尔多夫(Dusseldorf)跨过莱因河的Theodore-Heuss桥,但该桥直到 1958年才建成。
(c)扇形
布置的斜拉索是不相互平行的,它兼有上面两种布置方式的优点,在 设计中获得广泛应用。
31
(3)索距的布置
“稀索”与“密索” 密索体系优点如下: 1、索距小,主梁弯矩小(主梁上索距一般混凝土梁是4-10m,钢梁是12-
20m); 2、索力较小,锚固点构造简单; 3、锚固点附近应力流变化小,补强范围小; 4、利于伸臂架设; 5、易于换索。 6、斜拉桥采用悬臂法架设时,索间距宜为5~15m。
图1-1 三跨连续梁和三跨斜拉桥的恒载内力对比
21
2 孔跨布局
(1)双塔三跨式
主跨跨径较大,一般适用于跨越大江、大河。
图1-2 双塔三跨式斜拉桥
22
0.303
南京长江二桥(单位:m)
23
0.486
(2)独塔双跨式
由于它的主孔跨径一般比双塔三 跨式的主孔跨径小,适用于跨越 中小河流和城市通道。
图1-3 独塔斜拉桥