当前位置:文档之家› (第八章)空间滤波分析解读

(第八章)空间滤波分析解读


早期发展
1873 Abbe 提出二次成像理论 1875 Abbe’s experiment:
D
f
Objective low pass filter
D Relative Aperture f
Abbe (1893) -Porter (1906)实验
1935荷兰物理学家Zernike发明 相衬显微镜 Phase contrast microscope
8.1.1 阿贝成像理论
根据阿贝成像理论,当不考虑物镜孔径的限制时,物体所有频 率分量都形成频谱,所有频谱都参与成像,像就是物体的准确 复现。实际上,物镜的孔径总是有限大小的,由于受孔径光瞳 的限制,物体的频率分量只有一部分形成频谱,只有这部分的 频谱参与成像。一些高频的成分丢失而没有通过物镜,使像产 生失真,影响像的清晰度或分辨本领。当高频成分的能量很大, 物体孔径光瞳较小,丢失的高频成分影响较大,像的失真就较 严重;当高频成分的能量较小,物镜的光瞳较大,丢失的高频 成分影响较小,像的失真不大,像就与物体比较相似。因此, 所有由透镜组成的光学系统的作用,都类似于一个低通滤波器。
8.1.2 阿贝——波特实验
图8.1.3给出了不同方向放置的狭缝或小孔光阑对成像的影响。
上述实验可用阿贝的成像理论进行定性的解释。
物体的空间频谱,包含着物体信息中的各种空间频率分量。 在空间频谱平面上的频谱坐标中,中央原点的频谱,由物体 衍射光波与光轴平行的平面波分量相应的角谱形成,称为零 频,相当于直流分量,也就是物体图像的背景光;沿水平或 垂直坐标方向上,依次为基频、倍频、高频频谱,离中心原 点越远,相应的空间频谱的频率成分越高。他们分别由垂直 或水平光栅衍射的光波相应的角谱,即不同传播方向的平面 波分量通过透镜L2形成。物体的像和物体被系统传递的空间 频谱有一一对应的关系。他们的相似程度,完全有能够被系 统传递到像平面的频谱的多少决定。在空间频谱面上放置不 同透射情况的光阑,改变透射的空间频谱,能够被系统传递 的频谱受到调制,像平面上输出像的结构也相应发生变化。
8.1.2 阿贝——波特实验
xo Po yo y1 图8.1.2 阿贝——波特实验
在图8.1.2 所示的实验中,物体是二维正交光栅。相干光垂直照明下, 在L2的后焦面P1上出现物体的空间频谱。这些频谱是排列成平行于 正交光栅的等间距分布的光点点阵。在L3的后焦面Pi出现光点点阵 空间频谱所综合成的正交光栅的像。如不考虑透镜的有限孔径的 影响,物体的全部信息中的频率成分都形成空间的频谱,所有空间 频谱又都参与综合成像,得到的像是几何光学理想像。
Chapter 8
第八章
Optical Spatial Filtering
光学空间滤波
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
P
L
HS
AI
相干光 f
8.1 阿贝——波特成像理论
8.1.1 阿贝成像理论
图8.1.1 阿贝成像原理
• 二步成像理论 ------ 相干照明下的成像实质上是 • 物谱:第一次衍射第一次傅里叶变换 • 谱像:第二次衍射第二次傅里叶变换

8.1.1 阿贝成像理论
阿贝认为相干成像过程分两步完成,如图8.1.1 所示。第一步是 物体在相干平行光垂直照明下,可看作是一个复杂的光栅,照 明光通过物体贝衍射,衍射光波在透镜后焦平面上P1形成物体O 的夫琅禾费光斑图样;第二步是各衍射光斑作为新的次级波源 发出球面子波,在像平面相干叠加形成物体的像。将显微镜成 像过程看成是上述两步成像过程,人们称其为阿贝成像理论。 两步成像理论,是用频谱语言描述的波动光学观点。 参考3.2节讨论透镜成像性质过程中的式(3.2.6)。两次衍射过程, 也就是两次傅里叶变换的过程。由物平面到后焦面,经过物体 衍射的光波被分解为不同空间频率成分的角谱分量。也就是不 同传播方向的平面波分量,在后焦平面上形成物体的频谱。后 焦面就是频谱面,这是一次傅里叶变换过程。由物镜的后焦面 即频谱面到像平面,各角频谱分量合成为像,这是一次傅里叶 逆变换过程。
8.1.1 阿贝成像理论
应用阿贝成像原理分析显微镜的分辩本领。 设物体是间距为d的光栅,受相干光垂直照明。物体后焦面上有 直径为D的孔径光阑。由傅里叶变换时空间频率的取值与空间坐 标的关系可得,光栅在物镜后焦面上的一级频谱的位置为 f / d ,0 f为物镜的焦距。显然,d越小,一级频谱离开频谱面中心的距离 越远。当d减少到 , 并有
事实上,早在1864年在阿贝提出他的理论以前,Toepler就发明了Schlieren(纹 影)方法,早先用来探测透镜的疵病.Schlieren在德语中是条纹的意思.在这一 方法中,只是简单地把衍射图形挡去一半多一点,透镜中的疵病等相位物体就可 以看见.这简单而有效的方法沿用至今,使风洞中气压分布变成可见的图像. 下图中HS是光阑,它挡去一半多一点的衍射图形.P仍用相干光照明.
humaneye
objective piece
eye piece
生物学家观察透明显微镜标本(如生物切片,油膜、细菌等)时, 由于人眼只能感受光强度的变化,不能辨别位相变化,无法观察 到它的位相结构。 解决这一困难需要把位相变化转化为强度(或振幅)的变化,就 是把空间位相调制的信息变换为空间强度(或振幅)调制的信息。
D/ 2 f /
(8.1.1)
时,到达衍射极限。由式(8.1.1)可得
2 f / D
(8.1.2)

即为显微镜的分辨极限。它与孔径光阑的直径成反比。
8.1.2 阿贝——波特实验
Abbe (1893) -Porter (1906)实验
物体 平行激光 L 焦 平 面 像
f
f
f
f
L: Fourier变换透镜 焦平面 : 滤波平面
x1 P1
Pi yi
xi
8.1.2 阿贝——波特实验
Abbe-Porter实验 空间滤波 低通滤波 D 高通滤波 E 方向滤波 B,C,F 如果在频谱平面上不 同位置放置不同方向 的狭缝或小孔光阑, 分别阻挡部分频谱, 透射传递部分频谱, 则在像平面上就会观 察到改变了的物体的 不同输出像.
图8.1.3 阿贝——波特实验图示
相关主题