当前位置:
文档之家› 10.5 用机动法作静定梁的影响线
10.5 用机动法作静定梁的影响线
1 E (B 右 E向向向向向B 1右 E1 ) 1 C E FQB 右
重庆大学土木工程学院®
A
D
F
FQB右影响线 右
All Rights Reserved
Z =1
C b
B A
1
1 B
C FQC
d) FQC影响线
b) MC影响线
MA A MA B
Z =1
1
1
l
A FQA FQA
B
c) MA影响线
All Rights Reserved
e) FQA影响线
重庆大学土木工程学院®
多跨静定梁虚位移图形的特点
x A FP =1 K B E F C D
2m
6m
2m 2m
FQ C A
Z =1
C2
P
Fp =1 B
C C C1 FQC
竖向位移δP图
2)使机构在截面C左、右沿 QC正方向发生相对竖向虚位移。由于 )使机构在截面 左 右沿F 正方向发生相对竖向虚位移。由于C 处组成滑动铰的两根等长链杆和两侧的刚片在机构运动中必定保持 为平行四边形,因此, 必定是平行的, 为平行四边形,因此,在虚位移图中AC 1与 C2 B 必定是平行的,如 图所示。 图所示。
All Rights Reserved 重庆大学土木工程学院®
用机动法作支座的反力F 影响线的原理和步骤。 用机动法作支座的反力 RB影响线的原理和步骤。
x
应用刚体系虚功原理 ,有 有
FP =1 B C
A
FRBδ B − FPδ P = 0
δP FRB = δB
FP =1 A
P B
FRB的影响线竖标与荷载作用点的竖向 位移成正比,或者说, 位移成正比,或者说,由δ P图可得出 FRB的影响线的形状。为简便计,可令 的影响线的形状。为简便计, δ B=1,则可得到如图 所示形状和数值 ,则可得到如图c所示形状和数值 上完全确定的FRB的影响线。 上完全确定的 的影响线。
重庆大学土木工程学院®
All Rights Reserved
3)列写虚位移方程(假设 δ p 向上为正) )列写虚位移方程( 向上为正)
FQ C
Z =1
C2
P
Fp =1 B
FQC × δ Z − 1 × δ P = 0
A
C C C1 FQC
δP δP FQC = = = δP δZ 1
当取时的荷载作用点的竖向位移图( 当取时的荷载作用点的竖向位移图(δ P 即为F 影响线,如图所示。 图)即为 QC影响线,如图所示。由三 角形的几何关系,即可确定F 角形的几何关系,即可确定 QC影响线 各控制点的竖标。 各控制点的竖标。
FP =1 A a l A1 a A
Z =1
C b
B
M C × δ Z − 1× δ P = 0
C1
FP =1
P
δP δP MC = = = δP δZ 1
当取 δZ =1 时的荷载作用点的竖向位移 即为弯矩M 影响线,如图所示。 (δ P图)即为弯矩 C影响线,如图所示。
B
MC C MC ab l
8m
2m
8m
2m
第一类,属于附属部分的某量值。撤去相应约束后, 第一类,属于附属部分的某量值。撤去相应约束后,体系 只能在附属部分发生虚位移,基本部分仍不能动。因此, 只能在附属部分发生虚位移,基本部分仍不能动。因此, 位移图只限于附属部分。 位移图只限于附属部分。 第二类,属于基本部分的某量值。 第二类,属于基本部分的某量值。先作基本部分某量值的 位移图,再向两侧作直线延伸,在延伸范围内( 位移图,再向两侧作直线延伸,在延伸范围内(仅限于所 支承的附属范围内),遇全铰处转折,遇支座处为零, ),遇全铰处转折 支承的附属范围内),遇全铰处转折,遇支座处为零,其 间连以直线。 间连以直线。
B E
3m 2
F
C
D
MK
K MK
MK影响线
1 K2 4 1 4
A K
B E
1 4 3 K1 4
F
C
D
FQK影响线
All Rights Reserved
重庆大学土木工程学院®
MB A
B
MB E 1 2m E1
F
C
D
MB影响线
FQB左
1 4
A
B左 B
E E1 1
F
C
D
FQB左影响线 左
FQB 左
4
1 B1左 1 B1右 B右 B FQB右
All Rights Reserved 重庆大学土木工程学院®
用机动法作静定梁某量值Z影响线的步骤如下: 用机动法作静定梁某量值 影响线的步骤如下: 影响线的步骤如下 1)撤去与量值Z相应的约束,代之以正向的未知力 )撤去与量值 相应的约束 代之以正向的未知力Z 相应的约束, 这时原结构成为一个机构): (这时原结构成为一个机构):
C1
FP =1
P
B
MC C MC
b) 竖向位移δP图
All Rights Reserved 重庆大学土木工程学院®
2)使铰C左右两刚片沿 C的正方向发 )使铰 左右两刚片沿 左右两刚片沿M 的虚位移, 生相对转角 δ Z = α + β = 1 的虚位移, 如图所示。须注意的是, 如图所示。须注意的是,这里应理解为 是一个可能的微小的单位转角, 是一个可能的微小的单位转角,而不是 1rad。 。 3)列写虚位移方程为(假设δ P向上为 )列写虚位移方程为( 正)
竖向位移δP图
a A
1
C
B
MC影响线
All Rights Reserved 重庆大学土木工程学院®
(2)作剪力 QC影响线 作剪力F 作剪力
1)撤去与FQC相应的约束,即将截面 )撤去与 相应的约束, C左、右改为用两根平行于杆轴的平 左 行链杆(即滑动铰)相连, 行链杆(即滑动铰)相连,代之以一 对大小相等方向相反的正剪力F 对大小相等方向相反的正剪力 QC, 得图示具有一个自由度的机构。 得图示具有一个自由度的机构。这时 在截面C处可以发生相对的竖向位移 处可以发生相对的竖向位移, 在截面C处可以发生相对的竖向位移, 而不发生相对转动和水平移动 。
All Rights Reserved 重庆大学土木工程学院®
【例10-5】试用机动法作图示多跨静定梁 K、FQK、MB、FQB左 】试用机动法作图示多跨静定梁M 左 和FQB右的影响线。 右的影响线。
x A FP =1 K B E F C D
2m
6m
2m 2m
8m
2m
8m
2m
1m 2
A
3 m K1 2 1 2m
10.5 用机动法作静定梁的影响线
机动法是工程设计中很适用的方法。 机动法是工程设计中很适用的方法。 是工程设计中很适用的方法 它的优点是,不需经具体计算, 它的优点是,不需经具体计算,就能迅速地绘出影响线 的轮廓图, 的轮廓图,可用来确定荷载最不利位置以及对静力法进 行校核。 行校核。 机动法的理论依据,是理论力学中已学习过的刚体体系 机动法的理论依据,是理论力学中已学习过的刚体体系 虚位移原理, 虚位移原理,即刚体体系在力系作用下处于平衡的必要 和充分条件是:在任何可能的微小的虚位移中, 和充分条件是:在任何可能的微小的虚位移中,力系所 作的虚功总和为零。 作的虚功总和为零。应用机动法可以将作结构内力和支 座反力影响线的静力问题转化为求作结构位移图 静力问题转化为求作结构位移图的 座反力影响线的静力问题转化为求作结构位移图的几何 问题。 问题。
竖向位移δP图
b l C A a l 1 B
1
FQC影响线
All Rights Reserved 重庆大学土木工程学院®
和剪力F 【例11-4】试用机动法作图示悬臂梁弯矩 C、MA和剪力 QC、 】试用机动法作图示悬臂梁弯矩M FQA的影响线。 的影响线。
FP =1 A a l F QC MC MC A C B b
B FRA
C FRB
δP(x)图 图
1
A
FRB影响线
B
C
正负号规定如下:令撤去所求力约束后的机构沿所求力正向产生虚位移, 正负号规定如下:令撤去所求力约束后的机构沿所求力正向产生虚位移, 当虚位移图在基线上方,则量值影响线的竖标取正号;反之,取负号。 当虚位移图在基线上方,则量值影响线的竖标取正号;反之,取负号。本 例中F 影响线的竖标均为正。 例中 RB影响线的竖标均为正。
欲欲欲欲欲欲欲 则则则则则则则则 欲欲欲欲欲欲欲 欲欲欲欲欲欲欲 代代代代向代代欲Z
2)使体系沿Z的正方向发生相应的单位虚位移(在δ Z ), )使体系沿 的正方向发生相应的单位虚位移 的正方向发生相应的单位虚位移( 作出荷载作用点的竖向位移图( ),即为 的影响线。 即为Z的影响线 作出荷载作用点的竖向位移图(δ P图),即为 的影响线。 3)基线以上的竖标取正号,基线以下的竖标取负号。 )基线以上的竖标取正号,基线以下的竖标取负号。
All Rights Reserved 重庆大学土木工程学院®
的弯矩和剪力影响线。 【例10-3】用机动法作图示简支梁截面 的弯矩和剪力影响线。 】用机动法作图示简支梁截面C的弯矩和剪力影响线
作弯矩M 解: (1)作弯矩 C影响线 作弯矩
A C a l 去与MC相应的约束, )撤去与 相应的约束, 即将截面C处的约束由刚结 即将截面 处的约束由刚结 改为铰结, 改为铰结,并代之以一对大 小相等方向相反的使下边受 拉的力偶M 拉的力偶 C,得图所示具有 一个自由度( 一个自由度(铰C两侧的刚 两侧的刚 体可以自由转动)的机构。 体可以自由转动)的机构。