当前位置:文档之家› 计量经济学-案例分析-第六章

计量经济学-案例分析-第六章

第六章 案例分析
一、研究目的
2003年中国农村人口占59.47%,而消费总量却只占41.4%,农村居民的收入和消费是一个值得研究的问题。

消费模型是研究居民消费行为的常用工具。

通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。

同时,农村居民消费模型也能用于农村居民消费水平的预测。

二、模型设定
正如第二章所讲述的,影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为
t t t u X Y ++=21ββ
(6.43)
式中,Y t 为农村居民人均消费支出,X t 为农村人均居民纯收入,u t 为随机误差项。

表6.3是从《中国统计年鉴》收集的中国农村居民1985-2003年的收入与消费数据。

表6.3 1985-2003年农村居民人均收入和消费 单位: 元
2000 2001 2002 2003
2253.40 2366.40 2475.60 2622.24
1670.00 1741.00 1834.00 1943.30
314.0 316.5 315.2 320.2
717.64 747.68 785.41 818.86
531.85 550.08 581.85 606.81
为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均纯收入和现价人均消费支出的数据,而需要用经消费价格指数进行调整后的1985年可比价格计的人均纯收入和人均消费支出的数据作回归分析。

根据表6.3中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得
t t X Y 0.59987528.106ˆ+=
(6.44)
Se = (12.2238) (0.0214)
t = (8.7332)
(28.3067)
R 2 = 0.9788,F = 786.0548,d f = 17,DW = 0.7706
该回归方程可决系数较高,回归系数均显著。

对样本量为19、一个解释变量的模型、5%显著水平,查DW 统计表可知,d L =1.18,d U = 1.40,模型中DW<d L ,显然消费模型中有自相关。

这一点残差图中也可从看出,点击EViews 方程输出窗口的按钮Resids 可得到残差图,如图6.6所示。

图6.6
残差图
图6.6残差图中,残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶正自相关,模型中t 统计量和F 统计量的结论不可信,需采取补救措施。

三、自相关问题的处理
为解决自相关问题,选用科克伦—奥克特迭代法。

由模型(6.44)可得残差序列e t ,在EViews 中,每次回归的残差存放在resid 序列中,为了对残差进行回归分析,需生成命名为
e 的残差序列。

在主菜单选择Quick/Generate Series 或点击工作文件窗口工具栏中的Procs/ Generate Series ,在弹出的对话框中输入e = resid ,点击OK 得到残差序列e t 。

使用e t 进行滞后一期的自回归,在EViews 命今栏中输入ls e e (-1)可得回归方程
e t = 0.4960 e t-1
(6.45)
由式(6.45)可知ρ
ˆ=0.4960,对原模型进行广义差分,得到广义差分方程 t t t t t u X X Y Y +-+-=---)4960.0()4960.01(4960.01211ββ
(6.46)
对式(6.46)的广义差分方程进行回归,在EViews 命令栏中输入ls Y -0.4960*Y (-1) c
X -0.4960*X (-1),回车后可得方程输出结果如表6.4。

表6.4 广义差分方程输出结果 Dependent Variable: Y-0.496014*Y(-1) Method: Least Squares Date: 03/26/05 Time: 12:32 Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. C
60.44431 8.964957 6.742287 0.0000 X-0.496014*X(-1) 0.583287
0.029410
19.83325
0.0000
R-squared
0.960914 Mean dependent var 231.9218 Adjusted R-squared 0.958472 S.D. dependent var 49.34525 S.E. of regression 10.05584 Akaike info criterion 7.558623 Sum squared resid 1617.919 Schwarz criterion 7.657554 Log likelihood -66.02761 F-statistic 393.3577 Durbin-Watson stat
1.397928 Prob(F-statistic)
0.000000
**5833.04443.60ˆt t X Y +=
(6.47)
)9650.8(=Se (0.0294)
t = (6.7423)
(19.8333)
R 2 = 0.9609 F = 393.3577 d f = 16 DW = 1.3979
式中,1*4960.0ˆ--=t t t Y Y Y ,
1*4960.0--=t t t X X X 。

由于使用了广义差分数据,样本容量减少了1个,为18个。

查5%显著水平的DW 统
计表可知d L = 1.16,d U = 1.39,模型中DW = 1.3979> d U ,说明广义差分模型中已无自相关,不必再进行迭代。

同时可见,可决系数R 2
、t 、F 统计量也均达到理想水平。

对比模型(6.44)和(6.47),很明显普通最小二乘法低估了回归系数2ˆ
β的标准误差。

[原模型中Se (2ˆβ)= 0.0214,广义差分模型中为Se (2ˆ
β)= 0.0294。

经广义差分后样本容量会减少1个,为了保证样本数不减少,可以使用普莱斯—温斯
腾变换补充第一个观测值,方法是21*11ρ-=X X 和21*11ρ-=Y Y 。

在本例中即为
210.49601-X 和210.49601-Y 。

由于要补充因差分而损失的第一个观测值,所以在
EViews 中就不能采用前述方法直接在命令栏输入Y 和X 的广义差分函数表达式,而是要生成X 和Y 的差分序列X *和Y *。

在主菜单选择Quick/Generate Series 或点击工作文件窗口工具栏中的Procs/Generate Series ,在弹出的对话框中输入Y *= Y -0.4960*Y (-1),点击OK 得到广义差分序列Y *,同样的方法得到广义差分序列X *。

此时的X *和Y *都缺少第一个观测值,
需计算后补充进去,计算得*1X =345.236,*
1Y =275.598,双击工作文件窗口的X * 打开序列
显示窗口,点击Edit +/-按钮,将*
1X =345.236补充到1985年对应的栏目中,得到X *的19个观测值的序列。

同样的方法可得到Y *的19个观测值序列。

在命令栏中输入Ls Y * c X*得到普莱斯—温斯腾变换的广义差分模型为
**5833.04443.60t t X Y +=
(6.48)
)1298.9(=Se (0.0297)
t = (6.5178)
(19.8079)
R 2 = 0.9585 F = 392.3519 d f = 19 DW = 1.3459
对比模型(6.47)和(6.48)可发现,两者的参数估计值和各检验统计量的差别很微小,说明在本例中使用普莱斯—温斯腾变换与直接使用科克伦—奥克特两步法的估计结果无显著差异,这是因为本例中的样本还不算太小。

如果实际应用中样本较小,则两者的差异会较大。

通常对于小样本,应采用普莱斯—温斯腾变换补充第一个观测值。

由差分方程(6.46)有
9292
.1194960.014443
.60ˆ1
=-=β
(6.49)
由此,我们得到最终的中国农村居民消费模型为 Y t = 119.9292+0.5833 X t
(6.50)
由(6.50)的中国农村居民消费模型可知,中国农村居民的边际消费倾向为0.5833,即中国农民每增加收入1元,将增加消费支出0.5833元。

相关主题