当前位置:文档之家› 用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

例如,圆的切线定义为与圆只有一个交点的直线,但把这一定义用到其他曲线上就不行了。

如直线0=y 与抛物线2x y =只有一个交点,0=y 是2x y =的切线,但0=x 与抛物线2x y =也只有一个交点,但0=x 却不是2x y =的切线,由此可见,用“一个交点”来定义切线并不能用于所有曲线。

而学了微积分的知识后,就可以给出曲线切线的一般定义了。

切线的定义:设0m 是曲线)(x f y =上一定点,m 是该曲线上的一动点,从而有割线m m 0,令m 沿着曲线无限趋近于0m ,则割线m m 0的极限位置就是曲线)(x f y =在0m 的切线(如果极限存在的话)。

这一定义与初等数学中圆的切线定义是一致的(用于讨论圆的切线时),用这一定义也容易证明0=y 是2x y =的切线,而0=x 不是2x y =的切线,这一切线定义可用于任何曲线)(x f y =。

导数的几何意义就是曲线)(x f y =在点x 的切线斜率。

故运用上述切线的一般定义和结论,可以处理与切线有关的许多问题。

例6 求曲线nx y 1=在2=x 时的切线方程。

解:xy 1=' ∴当2=x 时,21=y 又 当2=x 时,21n y =∴当2=x 时,所求的切线方程为:)2(2121-=-x n y 即022122=+--n y x反思:由此可见,用微积分法解此类问题是多么的简单容易,可是在初等数学中,曲线)(x f y =的切线定义都难得给出,更别说讨论与)(x f y =的切线有关的问题了。

例7 已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值,过点)16,0(A 作曲线)(x f y =的切线,求此切线方程。

解:由例4,曲线方程为x x x f 3)(3-=,点)16,0(A 不在曲线上。

设切点为),,(00y x M 则点M 的坐标满足03003x x y -=,由于)1(3)(200-='x x f ,故切线的方程为))(1(30200x x x y y --=-.注意到点)16,0(A 在切线上,有)0)(1(3)3(16020030x x x x --=--化简得820-=x ,解得20-=x .因此,切点为)2,2(--M ,切线方程为0169=+-y x .2200222222000x x 22000222020y x P(x ,y )1P b ab bxy a +x y a a a +x bx P(x ,y ) y a a +x bx y y x x a a +x b x x x a y ''∴=00例10:设是双曲线-=上一点,求过点的切线方程。

解;考虑上半支双曲线的方程为=,=则处的切线斜率为=切线方程为-=(-)=(-)即0022y y x x 1b aP -=当在下半支时,也可得到同样的方程。

要点:1.导数是如何定义 2.如何求曲线)(x f y =在点),(o o y x 处的切线方程与法线方程。

第三章 导数与微分§ 3.1 导数的概念由于机器制造,远洋航海,天象观测等大量实际问题给数学家提出了许多课题。

其中求曲边梯形面积的研究导致了积分学的产生,而求变速运动的瞬时速度,求曲线上一点的切线,求函数的极大值和极小值等问题的研究导致了微分学的产生。

历史上,Newton 从瞬时速度出发,Leibniz 从曲线的切线出发,分别给出导数的概念,并明确给出计算导数的步骤,而且建立了有关积分与微分是互为逆运算的完整理论。

一. 导数的概念1. 平均变化率 设在点a x =处自变量改变)0(≠∆∆x x ,函数()x f y =相应地改变()()a f x a f y -∆+=∆, 则平均变化率是x y ∆∆()()xa f x a f ∆-∆+=.图3.1不难看出,平均变化率的几何解释是连续曲线上两点的割线的斜率(0→∆x 如何?) 2. 瞬时变化率当物体做变速直线运动时,它的速度随时间而确定,此时平均变化率ts∆∆表示时刻从0t 到t t ∆+0这一段时间内的平均速度v ,若设路程s 是时间t 的函数)(t f s =,则()()tt f t t f t s v ∆-∆+=∆∆=00,当t ∆很小时,可以用-v 近似地表示物体在时刻0t 的速度,t ∆愈小,近似的程度就愈好。

当0→∆t 时,如果极限()()t t f t t f t s o t t ∆-∆+=∆∆→∆→∆000lim lim存在,则称此极限为物体在时刻0t 的瞬时速度,即()()tt f t t f t sv o t ot t t ∆-∆+=∆∆=→∆→∆=00lim lim|0. 例 1. 已知自由落体的运动方程为 221gt s =.求(1): 落体从0t 到t t ∆+0这段时间内的平均速度 v .(2):落体在0t t =时的瞬时速度。

解 (1) 221gt s =,∴ (),21200gt t s =()200)(21t t g t t s ∆+=∆+.()()20202020200021)(212121)(21gt t g t gt gt gt t t g t s t t s s -∆+∆+=-∆+=-∆+=∆∴ 20)(21t g t gt s ∆+∆=∆∴. 平均速度 t g gt t s v ∆+=∆∆=210. (2):落体在0t t =时的瞬时速度。

瞬时速度 000021lim lim |0gt t g gt t s v t t tt =⎪⎭⎫⎝⎛∆+=∆∆=→∆→∆=. 3. 切线的斜率设有一连续函数 ()x f y =,则平均变化率xy∆∆是指曲线()x f y =上的两点的割线的斜率。

即割线PQ 的斜率是()xa f x a f x y ∆-∆+=∆∆)(. 当 0→∆x 时, 显然, 割线PQ 越来越趋于曲线()x f y =在点()()a f a P ,处的切线PT .即切线PT 是割线PQ 的极限位置,平均变化率的极限值(如果存在)x y x ∆∆→∆0lim 则是曲线()x f y =在点()()a f a P ,的切线PT 的斜率。

相关主题