当前位置:文档之家› (完整版)玻璃物理化学性能计算

(完整版)玻璃物理化学性能计算

钠钙硅玻璃的粘度—温度数据
二、玻璃的组成对粘度的作用
玻璃成分与玻璃粘度之间存在卓复杂的关系,一般可以从硅氧比、离子的极化、键强、结构对称性以及配位数等方面来说明。现分述于如:
2.1氧硅比
当氧硅比增大(例如熔体中碱含量增大),使大型四面体群分成为小型四面体群,自由体空间随之增大,导致熔体粘度下降,
一些钠钙硅酸盐在1400℃的粘度
在碱硅二元玻璃中,当O/Si比很低时,对粘度其主要作用的是硅氧四面体[SiO4]间的键力。极化力最大的Li+是减弱Si-O-Si键的作用最大,故粘度按Li2O-Na2O-K2O顺序递增。
2.4结构的对称性
在一定的条件下,结构的对称性对粘度有着重要的作用。如果结构不对称就可能在结构中存在缺陷和弱点,因此使粘度下降。
于10%—12%时增加粘度。
(4)PbO、CdO、BiO、SnO2等降低玻璃粘度。
此外,Li2O、ZnO、B2O3等都有增加低温粘度,降低高温粘度的作用。
3、玻璃粘度参考点
在玻璃生产上常用的粘度参考点如下:
(1)应变点:应力能在几小时内消除的温度,大致相当于粘度为 1013.6Pa.s,时的温度。
(2)转变点:相当一粘度为, 1012.4Pa.s时的温度,通常用T表示。
氰化物如Na2SiF6、Na3AlF6,硫酸盐如芒硝,氯化物如NaCl等都能显著地降低玻璃的表面张力,因此,这些化合物的加入,均有利于玻璃的澄清和均化。
表面张力随着温度的升高而降低,二者几乎成直线关系,实际上可认为,当温度提高100℃时表面张力减少1%,然而在表面活性组分及一些游离的氧化物存在的情况下,表面张力能随温度升高而稍微增加。
例如,硅氧键和硼氧键的键强属于同一数量级的,然而石英玻璃的粘度却比硼氧玻璃大的多,这正是由于二者结构的对称程度不同所致。又如磷氧键和硅氧键键强也属于同一数量级的,但是磷氧玻璃的粘度比石英玻璃的小的多。主要磷氧玻璃四面体中又一带双键氧、结构不对称的缘故。

|
[—P==O ]
|

2.5配位数
配位状态对玻璃的粘度也有重要的影响,氧化硼在这方面特别明显。在电荷相同的条件下,随氧离子配位数N的升高,增加了对硅氧集团的积聚紧密,粘度上升。
组分
O:SiO2
1400℃时的粘度(帕.秒)
SiO2
Na2O.2 SiO2
Na2O. SiO2
2Na2O.2 SiO2
2.0
2.5
3.0
4.0
109
28
0.16
<0.1
在玻璃中一氟化物代替氧化物时(如以CaF2取代CaO),由于阴离子与硅之比值增大,也有降低粘度的作用。
2.2化学键的强度
在其它条件相同的前提下,粘度随阳离子与氧的键力增大而增大。
3.玻璃的力学性能
3.1玻璃的理论强度和实际强度
一般用抗压强度、抗折强度、抗张强度和抗冲击强度等指标表示玻璃的机械强度。玻璃以其抗压强度高、硬度高而得到广泛应用,也因其抗张强度与抗折强度不高,脆性大而使其应用受到一定的限制。
玻璃的理论强度按照Orowan假设计算为11.76GPa,表面无严重缺陷的玻璃纤维,其平均强度可达686MPa。玻璃的抗张强度一般在 34.3—83.3MPa之间,而抗压强度一般在4.9——1.96GPa之间。但实际玻璃的抗折强度只有6.86MPa,比理论强度小2—3个数量级。这是由于实际玻璃中存在有微裂纹(尤其是表面微裂纹)和不均匀区(分相等)所致。
Na2O---CaO---SiO2玻璃的弹性、粘度与温度的关系
上图的三个区。在A区温度较高。玻璃表现为典型的粘度液体,他的弹性性质近于消失。在这一温度去中粘度仅决定于玻璃的组成和温度。当温度近于B区时,粘度随温度下降而迅速增大,弹性模量也迅速增大。在这一温度区的粘度去决定于组成和温度外,还与时间有关。当温度进入C区,温度继续下降,弹性模量继续增大,粘滞留东变得非常小。在这一温度区,玻璃的粘度和其它性质又决定于组成和温度而与时间无关。图中所市的粘度和弹性随温度的变化现象,可以从玻璃的热历史说明。
(2)富尔切尔法
玻璃的温度与粘度的关系也可用富尔切尔方程求算,即
-A + B
Ign= —————
T - To
式中,A、B、To 可从下式中求出:
A=-1.4788 Na2O+0.8350K2O+1.6030 CaO+5.4936 MgO-1.5183 Al2O3+1.4550.
B=6039.7 Na2O-1439.6 K2O-3919.3 CaO+6285.3 MgO+2253.4 Al2O3+5736.4
在两元(R2O-SiO2)玻璃中,当O/Si比值很高时(即R2O含量较高),硅氧四面体间连接较少,已接近遇岛状结构,四面体很大程度上依靠键力R-O相联接,因此键力量的Li+具有最高的粘度,粘度按Li2O-Na2O-K2O顺序递减。但当O/Si比值很低时,它们的粘度大小顺序由于此相反。
在加入配位数相同的阳离子情况下,各氧化物取代SiO2后年度的变化取决于R-O键力的大小。因此nAl2O3>nGa2O3何nSiO2>nGeO2.
T=Ax+By+Cz+D
式中 T——某粘度值对应的温度;
X、y、z——分别是Na2O、CaO+MgO、Al2O3的质量分数(%);
A、B、C、D——分别是Na2O、CaO+MgO、Al2O3的特性常数,随粘度值而变化。
如果玻璃成分中MgO含量不等于5%,则T值必须校正。
例如,某玻璃成分为SiO274%,Na2O 14%, CaO 7%,MgO 4%,Al2O31%,求粘度为103Pa.s时的温度。
To=-25.07 Na2O-312.0 K2O+544.3 CaO+384.0 MgO+294.4 Al2O3+198.1
式中,Na2O、K2O……表示各组分相对含量,即SiO2的摩尔数为1时,各组分的摩尔数与SiO2之比(RmOn/ SiO2),各项数字的系数从实验结果计算得出。实验温度范围为500—1400℃。该实验所算出的温度,其标准偏差为2.3—2.5℃。
查表得知n=103Pa.s时的温度为:
Tn=103=-1739*14-9.95*(7+4)+5.9*1+1381.4 =1033℃
进行校正:MgO实际含量为 4%,4%—3% =1%,查表得知,粘度为103Pa.s时,以
1% MgO置换CaO,温度将提高6℃,因此
Tn=103=1033℃+6℃=1039℃
三、玻璃的热学性质和化学稳定性
...(一)玻璃的热学性能
...(二)玻璃的化学稳定性
...(三)玻璃的光学性质
一、玻璃粘度和温度的关系
粘 度是玻璃的重要性质之一。它贯穿着玻璃生产整个阶段,从熔制、澄清、均化、成型、加工、直到退火都与粘度密切相关。在成型和退火方面年度起着控制性的作 用。在高速成型机的生产中,粘度必须控制在一定的范围内,而成型机的速度决定与粘度随温度的递增速度。此外玻璃的析晶和一些机械性能也与粘度有关。
所有实用硅酸盐玻璃,其粘度随温度的变化规律都属于同一类型,只是粘度随温度变化的速度以及对应某给定温度的有所不同。在10怕.秒(或者更低)至约1011怕.秒的粘度范围内,玻璃的粘度由玻璃化学成分所决定的,而在从约1011怕.秒(1015泊,或者更高)的范围内,粘度又是时间的函数。
这些现象可由图来说明:
粘度(帕.秒)
温度(℃)
Log10n
粘度范围
温度范围(℃)
粘度系数帕.秒℃
10
3.16*10
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1451
1295
1178
1013
903
823
764
716
674
639
609
583
559
539
523
0.0
1.5
2.0
3.0
(3)退火点:应力能在几分钟内消除的温度,大致相当于粘度为,1012Pa.s时的温度。
(4)变形点:相当于粘度为 ,1010—1011Pa.s时的ห้องสมุดไป่ตู้度范围。
(5)软化温度:它与玻璃的密度和表面张力有关,相当于粘度为 ,106.6Pa.s时的温度,通常用 Tf表示。
(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型操作的温度,相当于粘度为 ,102—103Pa.s时的温度;T下限限相当于成型时能保持制品形状的温度,相当于粘>105Pa.s时的温度。操作范围的粘度一般为103—106Pa.s
2.玻璃表面张力与组成及温度的关系
各种氧化物对玻璃的表面张力有不同的影响,如Al2O3、La2O3、CaO、MgO、能提高表面张力。K2O、PbO、B2O3、Sb2O3等如加入量较大,则能大大降低表面张力。同时,Cr2O3、V2O3、Mo2O3、WO3用量不多时也能降低表面张力。
组成氧化物对玻璃熔体与空气界面上表面张力的影响可分为三类。第"类组成氧化物对表面张力的影响关系,符合加和性法则,一般可用下式计算:
∑σ1αm
σ= —————
∑σm
式中 σ———玻璃的表面张力;
σ1———各种氧化物的表面张力因数(常数);
σm———氧化物的含量,以分子份数或分子百分数表示。
第Ⅱ类和第Ⅲ类组成氧化物对熔体的表面张力的关系是组成的复合函数,不符合加和性法则。由于这些组成的吸附作用,表面层的组成与蒋体内的组成是不同的。
(7)熔化温度:相当于粘度为 ,10Pa.s时的温度,在此温度下玻璃能以一般要求的速度熔化。常用Tm表示。
相关主题