当前位置:文档之家› 基带信眼图实验m精编b仿真

基带信眼图实验m精编b仿真

基带信眼图实验m精编b仿真文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]数字基带信号的眼图实验——m a t l a b 仿真一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验预习要求1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。

三、实验原理和电路说明 1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1 基带系统的分析模型抑制码间干扰。

设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

所对应的其冲激响应为:()222sin cos()()14s s s stT t T h t t t T T παππα=-(3-6)此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。

换言之,若输入码元速率'1/s s R T >,则该基带传输系统输出码元会产生码间干扰。

2、眼图所谓眼图就是将接收滤波器输出的,未经再生的信号,用位定时以及倍数作为同步信号在示波器上重复扫描所显示的波形(因传输二进制信号时,类似人的眼睛)。

干扰和失真所产生的畸变可以很清楚的从眼图中看出。

眼图反映了系统的最佳抽样时间,定时的灵敏度,噪音容限,信号幅度的畸变范围以及判决门限电平,因此通常用眼图来观察基带传输系统的好坏。

图3-3 眼图示意图四、仿真环境Windows NT/2000/XP/Windows 7/VISTA ; MATLAB 以上。

五、仿真程序设计 1、程序框架图3-4程序框架首先,产生M 进制双极性NRZ 码元序列,并根据系统设置的抽样频率对该NRZ 码元序列进行抽样,再将抽样序列送到升余弦滚降系统,最后画出输出码元序列眼图。

2、参数设置该仿真程序应具备一定的通用性,即要求能调整相应参数以仿真不同的基带传输系统,并观察输出眼图情况。

因此,对于NRZ 码元进制M 、码元序列长度Num 、码元速率Rs ,采样频率Fs 、升余弦滚降滤波器参考码元周期Ts 、滚降系数alpha 、在同一个图像窗口内希望观测到的眼图个数Eye_num 等均应可以进行合理设置。

3、实验内容根据现场实验题目内容,设置仿真程序参数,编写仿真程序,仿真波形,并进行分析给出结论。

4、仿真结果参考参考例程参数设置如下:无码间干扰时:Ts=1e-2; %升余弦滚降滤波器的理想参考码元周期,单位sFs=1e3; %采样频率,单位Hz。

注意:该数值过大将 %严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值过大将 %严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。

图3-5(a) 仿真参考结果图(1)图3-5(b) 仿真参考结果图(2)图3-5(c) 仿真参考结果图(3)从眼图张开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=60Hz(Ts=10ms),Rs<2B,满足了奈奎斯特第一准则的条件。

有码间干扰时:Ts=5*(1e-2); %升余弦滚降滤波器的参考码元周期,单位sFs=1e3; %采样频率,单位Hz。

注意:该数值过大将 %严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值过大将 %严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。

图3-5(d) 仿真参考结果图(4)眼图基本闭合,存在较为严重的码间干扰,这是因为码元速率Rs虽然仍为50Baud,但滤波器等效带宽已经变为12Hz(Ts=50ms),Rs>2B不再满足奈奎斯特第一准则。

多进制码元情况:图3-6 四进制NRZ码元眼图六、实验报告要求1、整理实验数据,画出相应的波形。

2、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的等效带宽设定值之间的关系,给出原因。

3、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的滚降系数设定值之间的关系,给出原因。

七、思考题1、自行编写升余弦滚降滤波器冲激响应函数,特别注意当公式中分子分母均为0时的特殊情况。

2、采用MATLAB自带眼图函数eyediagram来观察眼图。

八、参考程序close all;alpha=; %设置滚降系数,取值范围在[0,1]Ts=1e-2; %升余弦滚降滤波器的参考码元周%期, Ts=10ms,无ISI。

% Ts=2*(1e-2); %Ts=20ms,已经出现ISI(临界点)% Ts=5*(1e-2); %Ts=50ms,出现严重ISIFs=1e3; %采样频率,单位Hz。

注意:该数%值过大将严重增加程序运行时间Rs=50; %输入码元速率,单位Baud% M=2;M=4; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值%过大将严重增加程序运行时间。

Samp_rate=Fs/Rs %采样率,应为大于1的正整数,即 %要求Fs,Rs之间呈整数倍关系% Eye_num=2; %在一个窗口内可观测到的眼图个数。

Eye_num=4; %在一个窗口内可观测到的眼图个数。

%产生双极性NRZ码元序列NRZ=2*randint(1,Num,M)-M+1;figure(1);stem(NRZ);xlabel('时间');ylabel('幅度');hold on;grid on;title('双极性NRZ码元序列');%对双极性NRZ码元序列进行抽样k=1;for ii=1:Numfor jj=1:Samp_rateSamp_data(k)=NRZ(ii);k=k+1;endend%基带升余弦滚降系统冲激响应[ht,a] = rcosine(1/Ts,Fs,'fir',alpha);%画出基带升余弦滚降系统冲激响应波形figure(2);subplot(2,1,1);plot(ht);xlabel('时间');ylabel('冲激响应');hold on;grid on;title('升余弦滚降系统冲激响应,滚降因子\alpha=');%将信号送入基带升余弦滚降系统,即做卷积操作st = conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);xlabel('时间');ylabel('信号幅度');hold on;grid on;title('经过升弦滚降系统后的码元')%画眼图,在同一个图形窗口重复画出一个或若干个码元figure(3);for k = 10:floor(length(st)/Samp_rate)-10%不考虑过渡阶段信号,只观测稳定阶段ss = st(k*Samp_rate+1:(k+Eye_num)*Samp_rate); plot(ss);hold on;endxlabel('时间');ylabel('信号幅度');hold on;grid on;title('基带信号眼图');% eyediagram(st,Samp_rate);% xlabel('时间');% ylabel('信号幅度');% hold on;% grid on;% title('基带信号眼图');。

相关主题