当前位置:文档之家› 典型测试系统设计案例

典型测试系统设计案例

重要性 在高速、重载、高温条件下工作
的机器,摩擦、磨损又是其发生 故障的最主要原因 润滑是减少摩擦与磨损的简便而 有效的方法 轴承的润滑状态检测——满足最 小油膜厚度处轴承两表面不直 接接触
任务 对摩擦副间微小区域内的油膜厚
度进行直接测量 监测油膜的工作状态
2、润滑油膜厚度检测
行动平衡
4、旋转机械故障监测诊断网络化系统
测试对象——重大设备
流程工业的核心
发电机 压缩机 风机
4、旋转机械故障监测诊断网络化系统
测试对象——重大设备
事故造成损失惨重
直接经济损失至少在几十万元以上
秦岭200MW 5号汽轮发电机组特大事故(1988)
• 轴系的7处对轮螺栓、轴体5处发生断裂,共断为13断,主机基本毁坏 • 由油膜失稳开始的,突发性、综合性强烈振动造成的轴系严重破坏 • 没有监测数据 • 整个机组解体,损失惨重发电机
测量型材断面正应力布点 平面应力测量应变花布点
1、塔式起重机结构强度测试
测试方案
测量系统共布置了20个测点
1、塔式起重机结构强度测试
测试条件
假设条件:载荷不包括吊钩重量,载荷误差应小于1%;各工况皆是
处于空钩离地状态时进行仪器调零;测试数据均为吊重引起的应力, 不应包括自重和风阻应力
300
60
55
200
50
100 1074 1245 1420 1600 1791 1966 2149 2325 2677 2960 3230 3462 3743 3960 4191 4447 4749 4852
转速/rpm
缝纫机在不同转速下的振动位移
转速/rpm 缝纫机在不同转速下的噪声级
3、缝纫机噪声源测试分析
环境条件:测试温度10~25℃,湿度50%~70%,风力1级 测试工况:测试中选取了五种不同起重重量、三种变幅幅度、两种
方位角进行组合变化,分别测试各种工况下最大应力
• Q起重量 • R幅度——吊点到塔机回转中心的距离 • α起重臂与塔身之间的方位角
1、塔式起重机结构强度测试
测试步骤
检查和调整试验样机 粘贴应变片并干燥、密封、检查绝缘 接好应变测试系统,调试仪器,合理选择灵敏度,消除不正常现象 取空载状态作为初始状态,将应变仪调零 按照测试工况,分别测试各种情况下的最大应力

1~20
超载25%
8
18m
21.4kN
45º
1~20
超载25%
1、塔式起重机结构强度测试
数据处理与结果分析
• 静态:相同试验条件下多次测量取平均值
• 动态:用光线示波器记录下动态应变曲线
单向应力状态的应力计算 i Ei
max E max
Ei
K max
其中:E为结构材料的弹性模量,均取E=0.2×106MPa;
测试方案
传感器选择
电阻法——定性测量 通过测量油膜的电阻大小来判断其厚度 油膜的电学性能极不稳定——标定困难,难以定量
放电电压法 根据电压与电流的关系来推算出代表油膜厚度的放电电压 润滑膜的性质和纯洁程度对放电电压的影响——难以定量测定
电容法 • 当润滑油的介电常数已知后,根据电容值随油膜的厚度增大而降 低的变化关系测得油膜厚度——困难在于油膜间隙形状不明确
传感器选择
振动
转子振动:非接触式、振动 涡流传感器——Bently 激光传感器——米依
机壳振动:接触式、速度/加速度
转速:非接触式:涡流式、光电式 推荐传感器 • 振动、转速——涡流传感器
精度、成本适中 非接触测试、可靠稳定 安装容易
• 机壳振动——加速度传感器
使用方便 安装容易
测试方案
监测诊断发展趋势 网络化: 远程、分布式监测;异地托管 专业化:产品厂家参与、专业机构参与 标准化:信息标准化、分析模块标准化
方案 利用信息网络,实现旋转设备状态信息采集、存储、传输、分析和
共享等 传感器+信号处理+测量、分析、传输
指标 振动:快变信号,0~150μm±5%、带宽0~10kHz 转速:脉冲信号,0~12000rpm 工艺:慢变信号,0~5V±0.5%
• 声级计:电容传声器、放大器、衰减器、计权网 络、检波电路、指示电表、电源
• 测量条件:必须处于半自由场,一般在半消声室 或开阔空间
• 关键部位:缝纫机主轴、缝纫机针板孔
振动测量仪器与测量方法 • 加速度传感器 • 部位:缝纫机针板上送布牙的右侧、垂直于底板
3、缝纫机噪声源测试分析
振动峰峰值/um 噪声级/dB(A)
乌石化热电厂3号汽轮发电机组特大事故(1999)
• 汽轮机超速飞车至4500rpm • 发电机及机组油系统着火 • 设备直接经济损失1916万元
4、旋转机械故障监测诊断网络化系统
测试对象——重大设备
维修成本高
计划维修 设备不分状态好坏,一律执行计划预修,对设备大面积拆装
• 使有些还可以使用的零部件被提前更换 • 有些部件在拆卸过程中被损坏 • 原来磨合得很好的部件又被重新装配
• 耦合原理 耦合到输出光纤的光通量取决于输入 光纤的像发出的光锥底面与输出光纤 相重叠部分的面积——距离有关
距离变小
最佳位置
距离变大
2、润滑油膜厚度检测
传感器选择
• 光源——激光光源为氦氖激光灯 • 光电检测元件
• 光电二极管(PIN管)+运算放大器芯片 • 直接输出电压,输出电压与芯片接受到的光功率成正比
后续测量系统
系统分析
解决了其他方法无法消除的电磁干扰、使用寿命短、不耐高温、不 耐腐蚀等问题,实现了油膜厚度的精密检测
3、缝纫机噪声源测试分析
测试对象
3、缝纫机噪声源测试分析
测试任务 噪声测量基础
• 噪声 物理定义——大量频率和相位各异的声音复合而成的无序合声 生理感受——一种与人体有害的声音,它已成为主要公害之一
• 声压级Lp:衡量声音的强弱
Lp
20 lg
p p0
p:声压 p0:基准声压
• 噪声频率:噪声主要频率成分
• 频谱分析仪进行连续谱测量 • 测量各个频率带宽内的声压级
3、缝纫机噪声源测试分析
测试方案
测试目的 对某型号缝纫机噪声进行测试,目的是寻找噪声源,从而为降低 其噪声水平、提高产品质量提供依据——噪声大小、噪声源 缝纫机噪声主要是由结构振动产生 ——噪声级测量+振动测量
•探头直径(mm) φ8 •量程(mm) 2 •灵敏度(v/mm) 8 •频率响应(KHz) 0~5 •温漂(%/℃ FS) ≤0.1 •线性度误差(%FS) ≤±2.0
•灵敏度:100mV/g •量程:50g •频率范围:0.5-8000Hz(±10%) •安装谐振点:30kHz •分辨率:0.0002g •重量:8gm •线性:≤1% •输出偏压:8-12VDC •恒定电流:2-20mA •输出阻抗:<150Ω •激励电压:18-30VDC
状态维修 以设备状态作为维修的出发点,有针对性的纠正设备非正常状态
• 各个部件的使用寿命及运行状态 • 依靠对设备进行测试、检查和诊断来掌握其运行状态
6、旋转机械故障监测诊断网络化系统
设计目的
保障设备的长周期安全、高效运行
及时、准确地反映设备的运行状态、捕捉设备的运行隐患、确诊设备的 故障类型与部位,以消除灾难故障,避免严重故障,减少一般故障
测量内容 • 不同转速下的噪声水平及振动水平(了解噪声源大小) • 同时测量噪声与各部件的振动(判断噪声由那部分振动引起) • 采取分步运转方法测量各部件的振动(找出振动的主要原因)
3、缝纫机噪声源测试分析
声压级
计权声压级 (声级)
测量仪器与方法
噪声测量仪器与测量方法
声级计(噪声计)工作方框图
工况序号
R距离
Q吊重
α
测试点
备注
1
10m
29.4kN

1~20
额定载荷
2
10m
29.4kN
45º
1~20
额定载荷
3
10m
36.75kN

1~20
超载25%
4
10m
36.75kN
45º
1~20
超载25%
5
18m
17.15kN

1~20
额定载荷
6
18m
17.15kN
45º
1~20
额定载荷
7
18m
21.4kN
3、缝纫机噪声源测试分析
测量结果及分析
相干分析——不同频率下振动与噪声的相关程度
声振相干函数图(4500rpm)
• 分析结果 噪声与针板的振动有很大的相关程度。针板——机壳底板镶嵌,降噪也应 从抑制机壳表面振动入手
分步运转试验——找出哪一个部件是主要激励源 • 分析结果:针刺挑线机构是缝纫机运转时最主要的激励源,应对该机构进
1074 1245 1420 1600 1791 1966 2149 2325 2677 2960 3230 3462 3743 3960 4191 4447 4749 4875
测量结果及分析
幅值分析
• 振动有起伏现象 • 振动随转速升高呈增大趋势
90
700
85
600
80
75
500
70
400
65
σ δ 为测得的应力和应变
平面应力状态应力计算
1

E
1 2
Hale Waihona Puke ( 1 2 )2
E
相关主题