离心泵结构和原理
3.5.4 恒位油杯原理 恒位油杯的作用是使轴承箱体 内的润滑油位保持恒定。 恒位油杯的结构简图如右所示, 斜面的位置对恒位油杯非常关键, 由此形成的工作油位点是正常工 作状态时的油位。有的恒位油杯 没有专门的气孔,但都要保证斜 面以上部位与大气自由相通。
3. 离心泵结构
3.5.4 恒位油杯原理 下图为恒位油杯正常工作状态, 理论设计上工作油位点和设计油位 是相同的,恒位油杯内初始油量一 般保持在整个油杯的2/3处。恒位油 杯内液面高于轴承箱体内液面并能 保持一定高度的液位,是由于连通 器的原理,油杯内气体压力小于外 界大气压力。
3. 离心泵结构
3.5 轴承箱
3.5.1 轴承箱作用 轴承的作用是对泵轴进行支撑,实质是能够承担径向载荷。 也可以理解为它是用来固定轴的,使轴只能实现转动,而控 制其轴向和径向的移动。 轴承箱则用来固定轴承,同时作为装载轴承润滑油的容器。
3. 离心泵结构
3.5.2 轴承润滑
离心泵大部分采用滚动轴承,而滚动轴承的元件(滚动 体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在 外负荷作用下零件产生弹性变形,除个别点外,接触面上均 有相对滑动。滚动轴承各元件接触面积小,单位面积压力往 往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过 高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于 油膜的涂覆之中。 轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和 滚道接触面间形成一定厚度的油膜,采用中黏度的涡轮油 (国际标准化组织68级)较适宜。在油槽润滑中,轴承部分浸 在油中,油浸润高度以没过轴承底的50%为宜。如果超过50 %,过量的油涡流会使油温上升,油温升高会加速润滑荆的 氧化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。
3. 离心泵结构
3.2 泵体
即泵的壳体,包括吸入室和压液室。 ①吸入室 :
它的作用是使液体均匀地流进叶轮。
②压液室 : 它的作用是收集液体,并把它送入下级叶轮或导向排出管, 与此同时降低液体的速度,使动能进一步变成压力能。• 压液 室有蜗壳和导叶两种形式。
3. 离心泵结构
3.3 轴
轴是传递机械能的重要零件,• 原动机的扭矩通过它传给 叶轮。泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平 衡盘等零件。泵轴靠两端轴承支承,在泵中作高速回转,因 而泵轴要承载能力大、耐磨、耐腐蚀。泵轴的材料一般选用 碳素钢或合金钢并经调质处理。
离心泵结构和原理
离心泵结构和原理
一、离心泵工作原理 二、离心泵主要参数 三、离心泵构造 四、离心泵的开停操作 五、 离心泵的常见问题及处理
1. 离心泵工作原理 离心泵典型结构
1—轴 2 — 机封 3 — 扩压管 4 — 叶轮 5 — 吸入室 6 — 口环 7 — 蜗壳
1. 离心泵工作原理 1.1 离心泵工作原理
3. 离心泵结构
3.5.4 恒位油杯原理
右图为恒位油杯补油状态图。当轴 承箱体内的润滑油由于各种原因而 损耗后,箱体内油位下降,由于连 通器原理,恒位油杯斜面处的油位 降低到工作油位点以下,导致恒位 油杯内油液的压力平衡被破坏,润 滑油从恒位油杯内流出并进入轴承 箱体,外界气体在大气压力作用下 通过斜面的上端进入恒位油杯,直 到润滑油液面恢复到工作油位点时, 补油结束。
2.2 扬程
输送单位重量的液体从泵入口处(泵进口法兰)到泵出口处 (泵出口法兰),其能量的增值。 常用H表示,单位J/kg、m液柱。 (J=N· m)
2. 离心泵主要工作参数:
2.3 转速
泵的转速是泵每分钟旋转的次数,用n来表示。 单位:rpm,或r/s
一般离心泵转速970 rpm、1450 rpm、2950 rpm; 高速离心泵的转速可达 20000 rpm以上。
2. 离心泵主要工作参数: 2.1 流量
即泵在单位时间内排出的液体量,通常用体积单位表示,符号 Q,单位有m3/h,m3/s,l/s等, ⑴ 体积流量Q : m3/h m3/s L/s ⑵ 质量流量m : kg/h kg/s t/h
m=ρQ
ρ液体密度kg/m3。
用的较多
2. 离心泵主要工作参数:
1.清理进口管路的异物使进口畅通,或者增加管径的大小; 2.降低输送介质的温度;
4.降低安装高度;
5.重新选泵,或者对泵的某些部件进行改进,比如选用耐汽 蚀材料等等. 6 .使泵体内灌满液体或者在进口增加一缓冲罐就可以解决.
2. 离心泵主要工作参数:
流量 Q
扬程 H 转速 n 功率 N 效率η 气蚀余量(Δhr)
汽蚀使泵的性能下降
汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的 性能下降,严重时会使液流中断无法工作。
1. 离心泵工作原理
1.4.2 汽蚀的后果
汽蚀使泵产生噪音和振动 气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率 的噪音。严重时可以听到泵内有“噼啪”的爆炸声,同时引 起机组的振动。而机组的振动又进一步足使更多的汽泡产生 和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不 得不停机,否则会遭到破坏。
3. 离心泵结构
3.5.3 滚动轴承的浸油润滑
N>3000rpm时,油位在轴承最 下部滚动体中心以下,但不低于 滚动体下缘。 N=1500~3000rpm时,油位在 轴承最下部滚动体中心以上,但 不得浸没滚动体上缘。
N<1500rpm时,油位在轴承最 下部滚动体的上缘或浸没滚动体。
3. 离心泵结构
3. 离心泵结构
3.5.4 机械密封要求
机械密封对密封端面的加工要求很高,同时为了使密封端 面间保持必要的润滑液膜,必须严格腔制端面上的单位面积 压力,压力过大,不易形成稳定的润滑液膜,会加速端面的 磨损;压力过小,泄漏量增加。所以,要获得良好的密封性 能又有足够寿命,在设计和安装机械密封时,一定要保证端 面单位面积压力值在最适当的范围。
3. 离心泵结构
3.5 机械密封
3.5.1 机械密封的工作原理
机械密封是靠一对或数对垂直于轴作相对滑动的端面在 流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配 以辅助密封而达到阻漏的轴封装置。
3. 离心泵结构
3.5.2 机械密封的工作原理
常用机械密封结构如图所示。由静止环(静环)1、旋转 环(动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅 助密封圈6和静止环辅助密封圈8等元件组成,防转销7固定 在压盖9上以防止静止环转动。旋转环和静止环往往还可根 据它们是否具有轴向补偿能力而称为补偿环或非补偿还。
4. 离心泵操作
4.1 操作中可能出现的危害
1.劳动保护用具不全,工用具使用不当可能造成人身伤害 2.泵运转过程中,在运转部位作业可能发生人身伤害; 3.油气泄露可能易导致中毒伤害及火灾事故; 4.泵抽空易发生机械事故; 5.电机线路老化、缺相、接地不合格导致设备漏电,可 能 造成触电事故; 6.倒错流程造成刺漏。
3. 离心泵结构
3.5.3 机械密封泄漏途径
机械密封中流体可能泄漏的途径有A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密 封,二者均属静密封。B通道是旋转环与轴之间的密封,静 密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈。 A通道则是旋转环与静止环的端面彼此贴合作相对滑动的 动密封,它是机械密封装置中的主密封,也是决定机械密封 性能和寿命的关键。
4. 离心泵操作
4.2 预防措施
1.按操作规程正确使用劳动保护器具及工用具; 2.禁止在转动部位及附近作业; 3.加强室内通风,用可燃气体探测仪定期检测室内油气 浓度; 4.加强巡回检查,检查油温及液位; 5.定期检查电路系统、接地合格; 6.熟悉流程走向,正确切换流程。
1. 离心泵工作原理
1.5.3 离心泵产生汽蚀的原因
1、被输送的介质温度过高; 2、水池液位过低,有气体被吸入; 3、泵的安装高度过高; 4、流速和吸入管路上的阻力太大;
5、吸入管道、压兰(指不带液封的)密封不好,有空气进入。
6、流量过大,也就是说出口阀门开的太大
1. 泵工作原理
1.4.2 汽蚀的后果
汽蚀使过流部件被剥蚀破坏
通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延 至叶轮出口。起初是金属表面出现麻点,继而表面呈现槽沟 状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖 板穿孔,甚至叶轮破裂,造成严重事故。因而汽蚀严重影响 到泵的安全运行和使用寿命。
离心泵之所以能把水送出去是由于离心力的作用。水 泵在工作前,泵体和进水管必须罐满水形成真空状态,当叶 轮快速转动时,叶片促使水快速旋转,旋转着的水在离心力 的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部 分形成真空区域。水源的水在大气压力(或水压)的作用下 通过管网压到了进水管内。这样循环不已,就可以实现连续 抽水。
叶轮的作用是将原动机的机械能直接传给液体,以增加 液体的静压能和动能(主要增加静压能)。
3. 离心泵结构
3.1 叶轮
叶轮有开式、半闭式和闭式三种,如图所示。
开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含 有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮 在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗 粒的物料,效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率 高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。
Ne N
η
100 %
N:泵输入功率 (轴功率) Ne:液体得到功率(有效功率) 两者的差别在于损失,包括流动损失、泄漏、机械摩擦等。
3. 离心泵结构 叶轮 泵体 轴 轴封 轴承箱
3. 离心泵结构
3. 离心泵结构
3.1 叶轮
它是离心泵内传递能量给液体的唯一元件,叶轮用键固定 于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量 传给液体。