习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 t v mma f d d == 即 tvm kv d d ==-所以 t m kv v d d -=对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0得 t mkv v -=0ln因此 t m kev v -=0(2) 由牛顿第二定律 x vmv t x x v m t v mma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得tv mma f F mg d d ==--即 tv m ma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d d 得 mkt F mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 12-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
此时 2T kv mg =即 kmgv =T 有牛顿第二定律 tv m kv mg d d 2=- 整理得mtkv mg v d d 2=- 对上式两边积分mgkm t kv mg v t v21d d 002⎰⎰=-得 mtvk mg v k mg =+-ln整理得 T 22221111v eek mg ee v kgm t kg m tkgm t kg m t+-=+-=2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1⨯=h m 的高空中环绕地球作匀速率圆周运动。
求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。
[解] 卫星所受的向心力即是卫星和地球之间的引力()2e h R mM Gf +=地2e R M Gg 地=由上面两式得()()()N 1082.71085.11063781063788.913273263232e 2e ⨯=⨯+⨯⨯⨯⨯=+=h R R mgf(2) 由牛顿第二定律 hR v m f +=e 2()()s m 1096.613271085.11063781082.73633e ⨯=⨯+⨯⨯⨯=+=m h R f v (3) 卫星的运转周期()()2h3min50s s 1043.71096.61085.1106378223363e =⨯=⨯⨯+⨯=+=ππv h R T 2-5 试求赤道上方的地球同步卫星距地面的高度。
[解] 设同步卫距地面高度为h ,距地心为R +h ,则22ωmr r MmG = mg R MmG =2 所以 2gR GM =代入第一式中 3122⎪⎪⎭⎫ ⎝⎛=ωgR r s rad 1027.736002425-⨯=⨯=πω解得 m r 71022.4⨯=m 1058.31037.61022.4467⨯=⨯-⨯=-=R r h2-6 两个质量都是m 的星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。
已知轨道半径为R ,求:(1)每个星球所受到的合力;(2)每个星球的运行周期。
[解] 因为两个星球在同一轨道上作圆周运动,因此,他们受到的合力必须指向圆形轨道的圆心,又因星球不受其他星球的作用,因此,只有这两个星球间的万有引力提供向心力。
所以两个星球必须分布在直径的两个端点上,且其运行的速度周期均相同(1)每个星球所受的合力()2222142R m G R mmGF F ===(2) 设运动周期为TR v m F 21= vR T π2= 联立上述三式得 GmR R T π4= 所以,每个星球的运行周期GmR RT T T π421=== 2-7 2-82-9 一根线密度为λ的均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。
现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面的瞬时作用力。
[解] 链条对桌面的作用力由两部分构成:一是已下落的s 段对桌面的压力1N ,另一部分是正在下落的x d 段对桌面的冲力2N ,桌面对x d 段的作用力为2N '。
显然 sg N λ=1t 时刻,下落桌面部分长s 。
设再经过t d ,有x d 落在桌面上。
取下落的x d 段链条为研究对象,它在t d 时间之内速度由gs v 2=变为零,根据动量定理p t N d d 2=' (1) x v p d 0d λ-= (2) t v x d d = (3)由(2)、(3)式得 λsg N 22-=' λsg N N 222='-= 故链条对桌面的作用力为sg N N N λ321=+=2-10 一半径为R 的半球形碗,内表面光滑,碗口向上固定于桌面上。
一质量为m 的小球正以角速度ω沿碗的内面在水平面上作匀速率圆周运动。
求小球的运动水平面距离碗底的高度。
[分析] 小钢球沿碗内壁作圆周运动,其向心力是由内壁对它的支承力的分力提供的,而支承力的方向始终与该点内壁相垂直,显然,不同的角速度对应不同大小和方向的支承力。
[解] 设小球的运动水平面距碗底的高度为h ,小球受力如图所示,则mg N =θsinr m N 2cos ωθ=R hR -=θsin Rr=θcos由以上四式得 ⎪⎭⎫ ⎝⎛-=R g R h 21ω2-11 自动步枪连发时每分钟射出120发子弹,每颗子弹的质量为m =7.90g ,出口速率为735s m ,求射击时(以分钟计)抢托对肩的平均压力。
[解] 取t ∆时间之内射出的子弹为研究对象,作用在子弹上的平均力为N ',根据动量定理得p t N ∆=∆'所以 N 6.117351090.7220601203=⨯⨯⨯==∆-∆=∆∆='-mv ttv mtp N 故枪托对肩部的平均压力为 N 6.11='=N N2-12 水力采煤是利用高压水枪喷出的强力水柱冲击煤层。
设水柱直径为D =30mm ,水速v =56s m ,水柱垂直射到煤层表面上,冲击煤层后速度变为零。
求水柱对煤层的平均冲力。
[解] 取长为dx 的一段水柱为研究对象,设它受到的煤层的作用力为N ',根据动量定理 p t N d d ='所以 ()2224d 2d 0d d v D t v D x t p N ρπρπ-=⋅⋅-==' ()N 1022.2561014103032323⨯-=⨯⨯⨯⨯⨯-=-π故水柱对煤层的平均冲力N 1022.23⨯='-=N N2-13 F =30+4t 的力作用在质量为10kg 的物体上,求: (1)在开始两秒钟内,此力的冲量是多少?(2)要使冲量等于 300s N ⋅,此力作用的时间为多少?(3)若物体的初速度为10 s m ,方向与F 相同,在t =6.86s 时,此物体的速度是多少?[解] 根据冲量定义()20230d 430d t t t t t F I tt +=+==⎰⎰(1)开始两秒钟此力的冲量s N 6822230230222⋅=⨯+⨯=+=t t I(2) 当s N 300⋅=I 时3002302=+t t解得 s 86.6=t(3) 当s 86.6=t 时,s N 300⋅=I ,根据动量定理0mv mv p I -=∆=因此 s m 401010103000=⨯+=+=m mv I v2-14 质量为m 的质点,以不变速率v 沿图示三角形ABC 的水平光滑轨道运动。
求质点越过角A 时,轨道作用于质点冲量的大小。
[解] 如图所示,质点越过A 角时动量的改变为()12v v p -=∆m由图知p ∆的大小mv mv p 360sin 20==∆根据动量定理 mv p I 3=∆=2-15 质量为m 的质点在xOy 平面内运动,其运动方程j i r t b t a ωωsin cos +=,试求:(1)质点的动量;(2)从t =0到ωπ2=t 这段时间内质点受到的合力的冲量;(3)在上述时间内,质点的动量是否守恒?为什么?[解] 质点的速度j i rv t b t a tωωωωcos sin d d +-==(1) (1) 质点的动量()j i v p t b t a m m ωωωcos sin +-==(2) 由(1)式得0=t 时,质点的速度j v ωb =0ωπ2=t 时,质点的速度为j j i v ωπωπωb b a =+-=2cos 2sin t根据动量定理00t =-=∆=mv mv p I解法二:j i a F ji va j i rv t mbw t ma m t bw t a tt b t a t ωωωωωωωωωωsin cos sin cos d d cos sin d d 2222--==--==+-==()0d sin cos d 202220=--==⎰⎰ωπωπωωωt t mbw t ma t j i F I(3) 质点的动量不守恒,因为由第一问结果知动量随时间t 变化。
2-16 将一空盒放在台秤盘上,并将台秤的读数调节到零,然后从高出盒底h 处将石子以每秒n 个的速率连续注入盒中,每一石子的质量为m 。
假定石子与盒子的碰撞是完全非弹性的,试求石子开始落入盒后t 秒时,台秤的读数。
[解] t 秒钟后台秤的读数包括下面两部分,一部分是已落入盒中的石子对称盘的压力1N ,另一部分是正下落的石子对秤的冲力2N ,显然nmgt N =1取t ∆时间下落的石子为研究对象,设它们所受到的平均冲力为N ',根据动量定理gh t nm tv nm p t N 2002∆-=∆-=∆=∆' 所以 gh nm N 22-=' 故t ∆时间下落的石子对称的冲力gh nm N N 222='-= 因此秤的读数为gh nm nmgt N N N 221+=+=2-17 一质点的运动轨迹如图所示。