质点动力学习题答案2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v由①、②式消去t ,得2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=y 分量:dtdVmKV mg =-- 即dt mKV mg dV 1-=+mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K mmg KV mg K m t +=+=② ∵dtdy V=∴Vdt dy =021()1K t m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为mxg l ,根据牛顿定律,有 图2-4通过变量替换有 m dvxg mv l dx =0,0x v ==,积分00l vm xg mvdv l =⎰⎰由上式可得链条刚离开桌面时的速度为v gl =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1)1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图所示. (1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有题2-5图联立,解得g a ='方向向下 (2)2m 对地加速度为22ga a a =-'=方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a +='∴g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少?解:设物体沿+x 方向运动,25250501===⎰⎰tdt Fdt I N·S(1I 沿i方向)7521051052===⎰⎰tdt Fdt I N·S(2I 沿i方向)∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回. 设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞过程中小球受到的冲量?=I⑵设碰撞时间为05.0=∆t s ,求碰撞过程中小球受到的平均冲力?F = 解:i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F=(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得bat =(2)子弹所受的冲量 将ba t =代入,得(3)由动量定理可求得子弹的质量2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)解:当小木块A 以初速度0v 向右开始运动时,它将受到木板B 的摩擦阻力的作用,木板B 则在A图2-10给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,根据质点系的动量定理0()k A B A F t m m v m v -∆=+-再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=- 以及'1k A F m g μ= 解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-代入数据得 2.5v =m/s t ∆=7.65s 2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,两木块各以多大速度运动. 解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止,由动量定理,于是有设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有 解以上方程可得图2-112-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面.如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在dt 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 所以2dxF vv dtρρ== 由自由落体的速度22v gx =得这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以 所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量.2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离.解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得其中v ,V 分别为人和小船相对于静水的速度,可得m -MV =v 人相对于船的速度为'M mM+=-=v v V v 设人在t 时间内走完船长l ,则有在这段时间内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求:(1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量;(3) 在这个过程中,子弹施于木块的冲量.解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒 (1)0()mv m M u =+ 所以0mv u m M=+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为 2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m 的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解:质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得人到达车B 时,共同得速度为2u ,由动量守恒得人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12mu v M m=+ 所以车B 和车A 得速率之比为2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以水平向后的相对速度u 抛出,问跳远成绩因此增加多少? 解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系 从最高点到落地,人做平抛运动所需时间0sin v t gϕ= 跳远距离增加为2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有()0Mv Nm v u +-= 所以N 个人同时跑步跳车时,车速为(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得第二个人跳车时,有以此类推,第N 个人跳车时,有所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm >>⋅⋅⋅>+++ 故Nv v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。