发酵工厂工艺课程设计题目:5000t链霉素生产工艺设计课程名称:发酵工厂工艺设计概论学院:药学与生物工程学院班级: 112100101学号: 20姓名:指导老师:二零一五年五月目录1前言 (4)2设计任务书 (5)2.1本课程设计的性质、目的 (5)2.2本课程任务: (5)2.3基本要求: (5)2.4 基础数据: (5)2.5设计内容: (6)2.6参考数据及公式 (6)3厂址选择 (7)3.1厂址选择主要考虑的几个因素 (7)3.2厂址的最终选择 (7)3.3厂址卫星图 (8)4工厂总平面设计 (8)4.1工厂的平面设计图见附表: (8)5工艺流程简图及说明论证 (8)5.1发酵工艺 (8)5.1.1斜面孢子培养 (8)5.1.2 摇瓶种子培养 (9)5.1.3 种子罐扩大培养 (9)5.2 链霉素发酵条件及中间控制 (9)5.2.1溶氧的影响及控制 (9)5.2.2 温度 (10)5.2.3 pH值 (11)5.3 提取工艺 (11)5.4工艺流程简图如下: (12)6工艺计算 (13)6.1物料衡算 (13)6.2热量衡算 (14)6.2.1.对于生产1000kg链霉素产品,利用直接蒸汽混合加热,蒸汽消耗量为: (14)6.2.2.发酵罐空罐灭菌时的蒸汽消耗量估算: (15)6.2.3.发酵罐实罐灭菌保温时的蒸汽消耗量估算: (15)6.3耗水量的计算 (16)7发酵车间设备的选型计算 (17)7.1发酵罐的设计 (17)7.1.1发酵罐的选型及尺寸 (17)7.2设备结构的工艺设计 (18)7.2.1 空气分布器 (18)7.2.2 挡板 (18)7.2.3搅拌器设计 (18)7.2.4电机设计及轴功率的计算 (19)7.2.5冷却面积的计算与冷却管的设计 (20)7.2.6 PH测定 (22)7.2.7消泡 (22)7.2.8观察窗口 (22)7.2.9液面高度显示管安装 (22)7.2.10封头连接方式 (23)7.2.11密封方式 (23)8对本设计的评述 (23)9个人心得 (24)10参考文献 (24)1前言链霉素(Streptomycin)是瓦克斯曼(Waksman S.A.)于 1944 年从灰色链霉菌(Streptomyces,griseus)培养液中分离出来的一种碱性抗生素。
链霉素是一种相当强的有机碱,也是一种多糖类化合物。
其分子结构是由链霉肌、链霉糖和N-甲基-L-葡萄糖胺三部分以苷键相联结而成的。
链霉素碱稳定性特别差,工业产品主要是其硫酸盐形式,即硫酸链霉素(Streptomycin Sulfate)。
链霉素对结核杆菌有强大抗菌作用,其最低抑菌浓度(MIC)一般0.5 mg/L。
它对许多革兰氏阴性菌(G-)如大肠杆菌、肺炎杆菌、肠杆菌属、沙门菌属、布鲁菌属等也具抗菌作用。
链霉素对革兰氏阳性菌(G+)抗菌活性较差。
链霉素游离碱为白色粉末。
大多数盐类也是白色粉末或结晶,无嗅,味微苦。
链霉素在中性溶液中能以三价阳离子形式存在,所以可用离子交换法进行提取。
其水溶液比较稳定,但其稳定性受PH值和温度的影响较大。
其硫酸盐的水溶液在PH=4-7,室温下放置数星期仍很稳定,如在冰箱中保存三个月内活性无变化。
目前抗生素的生产主要是利用微生物发酵来进行,少数采用化学合成的方法,当然也有的采用化学法或生化法半合成。
对于链霉素可由灰色链霉菌发酵生产。
双氢链霉素可由湿链霉菌产生,但通常以半合成方法生产。
一般认为链霉素是治疗结核杆菌感染的首选药物,除此以外,还用于治疗革兰氏阴性菌所引起的泌尿道感染、结核性脑膜炎,鼠疫,肠道感染,肺炎,败血症,百日咳等。
链毒素的缺点是容易产生耐药性;长期使用对第八对脑神经有毒害除了医用外,也有报道将链霉素用于农牧业的。
例我国新疆某生产建设兵团的农场自1985年起应用链霉素治疗菜类瓜类和粮食等作物的病害,取得较好效果;链霉素还可用于猪肺炎,雏鸡白痢疾、以及鸡,鸭,鹅的巴氏杆菌感染等的治疗。
国内有些厂家将生产的链霉素作为农用出口,效益较好。
2设计任务书2.1本课程设计的性质、目的本课程是生物工程专业的一门实用性和技术性很强的专业课程。
学习本课程的目的是使学生在学完生物工程专业的有关课程后,尤其是在学完《发酵工艺学》、《生物工程设备》和《发酵工厂工艺设计概论》这三门课程后,综合运用3年所学的全部知识,进行工厂的初步设计。
通过专业课程设计使学生掌握应具备的基本设计技能。
待学生走上工作岗位后既能担负起工厂技术改造的任务,又能进行车间或全厂的工艺设计。
2.2本课程任务:1.撰写简要设计说明书,内容包括前言、设计任务书、厂址选择、物料衡算、设备衡算及选型等;2.绘制工厂总平面布置图一张、产品工艺方案流程图一张、发酵车间发酵罐的设计图(包括俯视图和剖面图)一张、车间设备和管道布置图。
2.3基本要求:通过课程设计,应训练学生提高以下几方面的能力:1、搜集实际工业生产工艺数据,熟悉技术文献资料。
2、合理设计工艺路线,准确进行工艺过程计算和设备设计选型计算。
3、以精简的文字、清晰的图表来表达个人设计思想、设计结果。
4、树立科学、经济的设计思想,兼顾安全、劳保、环保等要求。
2.4 基础数据:生产规模:5000/年(第2组)产品规格:成品效价为800单位/mg 生产天数:300天/年倒罐率:1%发酵装料系数:70% 接种量:15%发酵液收率:95%提炼总收率:70%平均发酵水平:25000单位/ml;发酵周期:8天;每天放罐数:6罐。
种子培养基配比:牛肉膏6%,葡萄糖4%,KH2PO41%,MgSO41%,接种量15% 生产培养基配比:葡萄糖4%,黄豆饼粉0.8%,玉米浆1.5%,(NH4)2SO4 0.5%,豆油0.2%,KH2PO40.01%,CaCO30.04%2.5设计内容:1.根据以上设计任务,查阅有关资料、文献,搜集必要的技术资料,工艺参数与数据,进行生产方法的选择,工艺流程与工艺条件的确定与论证。
2.工艺计算:全厂的物料衡算;发酵车间的热量衡算(即蒸汽耗量的计算);水用量的计算。
(注:不计算耗冷量)3.发酵车间设备的选型计算:包括设备的容量,数量,主要的外形尺寸。
(注:①不计算种子发酵罐设备选型;②发酵罐数应多加1个备用的;③发酵罐容积应以《生物工程设备》教辅资料P27,标准表进行选择,标准表的公称体积“75m3”改成“65m3”)4.对发酵设备进行详细化工计算与设计。
设计要求:1.根据以上设计内容,书写设计说明书(以《发酵工厂工艺设计概论》P.254车间初步设计说明书的编写要求书写)。
2.完成图纸四张(A3纸打印):工厂总平面布置图;全厂工艺流程图;发酵设备总装图(剖面和俯视图);车间设备布置图。
2.6参考数据及公式罐体的高径比H/D:1~3搅拌桨直径与罐体直径之比D i/D:1/3~1/2挡板宽度与罐体直径之比W b/D:1/8~1/12(4块挡板)最下层搅拌桨高度与罐体直径之比:0.8~1.0相邻两层搅拌桨距离与搅拌桨直径之比:1~2.5发酵条件:转速350r/min,温度28℃,pH7.2(400L 发酵罐)冷却水进出口温度分别为25℃、30℃黏度:38cP;培养基比热容:C=0.37×4.18X+4.18(1-X)X—固形物的质量百分比,0.37×4.18-固形物的比热3厂址选择3.1厂址选择主要考虑的几个因素3.2厂址的最终选择经过我们组队员的实地考察和卫星地图的查看,我们选择了一块在理工大学附近的花溪街道新屋村1社的一块空地上。
这里交通便利,水资源丰富,原料供应好,劳动力丰富,土地成本不高。
也能为我们理工大学的学子们提供就业的岗位。
3.3厂址卫星图4工厂总平面设计4.1工厂的平面设计图见附表:5工艺流程简图及说明论证5.1发酵工艺5.1.1斜面孢子培养将砂土管(或冷冻管)菌种接种到斜面培养基,经培养后即得原始斜面。
原始斜面质量要求一般为:菌落分布均匀,密度适中,颜色洁白,但菌落丰满,。
再从原始斜面的丰满单菌落接种至斜面上,长成后即得生产斜面,斜面上的菌落应为白色丰满的梅花形和馒头形,背面为淡棕色色素,排除各种杂型菌落。
经两次传代,可达到纯化的目的,排出变异的菌株。
其质量还应通过摇瓶实验来进行控制。
合格的孢子面存在低温冷库(0~4℃)内备用。
5.1.2 摇瓶种子培养生产斜面的菌落接种到摇瓶种子培养中,经过培养基即得摇瓶种子。
链霉素发酵经常使用摇瓶种子来接种种子罐。
种子质量以菌丝阶段、发酵单位、菌丝粘度或浓度、糖氮代谢、种子液色泽和无菌检查为指标。
摇瓶种子可以直接接种子罐,也可以在扩大培养,用培养所得的子瓶来接种。
药瓶培养的培养基成分为黄豆饼粉、葡萄糖、硫酸铵、碳酸钙等。
黄豆饼粉的质量和葡萄糖的用量对种子质量都有影响。
5.1.3 种子罐扩大培养种子罐培养是用来扩大种子量的。
种子罐培养可为2~3级,根据发酵罐体积大小和接种量来确定。
第一级种子罐一般采用摇瓶种子接种,2~3级种子罐则是逐级转移,接种量一般都为10%左右。
种子质量对后期发酵的影响甚大,种子必须符合各项质量要求(糖氮代谢、菌浓和菌丝阶段、效价和无菌要求),方能转罐。
因此在培养过程中,必须严格控制好罐温、通气搅拌和泡沫,以保证菌丝生长良好,得到合乎要求的种子。
5.2 链霉素发酵条件及中间控制5.2.1溶氧的影响及控制链霉素产生菌一灰色链霉菌是一种高度需氧菌。
它在整个代谢过程中以葡萄搪做为主要碳源,只有以氧做为最终电子受体时方能获得大量能量,来满足菌体生长、繁殖和合成链霉素的需要.物质代谢与能量代谢是相辅相成的。
据文献记载[19],空气中,氧在培养液中的饱和浓度(1 a tm, 25℃})大约只有0.2毫克分子(O2)/升,而链霉素发酵液中菌体的摄氧率在10~50毫克分子(O2)/升小时。
因此向发酵液中迅速地补充溶解氧.是链霉素发酵中的重要问题[11]。
对溶氧水平有较大影响的因素主要有:a、菌体代谢是否旺盛。
b、培养液的粘度:过高的粘度会影响氧的传递,即影响氧由气相溶解于液相之中。
c、补料:补糖后糖代谢加快,补入10秒钟后溶氧即明显下降,但经30~40分钟后又逐渐恢复到补前水平。
这种变化当补糖量超过 1.0%时较明显。
当补无机氮源使氨基氮增加l0mg/100ml以上时,亦有这种变化。
d、罐压:实验证明罐压对溶氧的影响较空气流量对溶氧的影响更为明显。
在菌体生长前期,空气流量在一定范围内的增减对溶氧几乎没有什么影响,而罐压变化则溶氧变化明显。
在培养前期,一般罐压每升高或降低0.lkg/cm2溶氧浓度就升高或降低4%左右;在培养中、后期,罐压每升高或降低0.lkg/cm2溶氧浓度就升高或降低3%左右。
但罐压不能控制过高,超过一定限度对菌体的生长、代谢就要产生不良影响。