4.5 直齿圆柱齿轮强度计算一、轮齿的失效齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。
由于上述条件的不同,齿轮传动也就出现了不同的失效形式。
一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。
至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。
轮齿折断轮齿折断有多种形式,在正常情况下,主要是齿根弯曲疲劳折断,因为在轮齿受载时,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断(见图1 图2 图3)。
此外,在轮齿受到突然过载时,也可能出现过载折断或剪断;在轮齿受到严重磨损后齿厚过分减薄时,也会在正常载荷作用下发生折断。
在斜齿圆柱齿轮(简称斜齿轮)传动中,轮齿工作面上的接触线为一斜线(参看),轮齿受载后,如有载荷集中时,就会发生局部折断。
若制造或安装不良或轴的弯曲变形过大,轮齿局部受载过大时,即使是直齿圆柱齿轮(简称直齿轮),也会发生局部折断。
为了提高齿轮的抗折断能力,可采取下列措施:1)用增加齿根过渡圆角半径及消除加工刀痕的方法来减小齿根应力集中;2)增大轴及支承的刚性,使轮齿接触线上受载较为均匀;3)采用合适的热处理方法使齿芯材料具有足够的韧性;4)采用喷丸、滚压等工艺措施对齿根表层进行强化处理。
齿面磨损在齿轮传动中,齿面随着工作条件的不同会出现不同的磨损形式。
例如当啮合齿面间落入磨料性物质(如砂粒、铁屑等)时,齿面即被逐渐磨损而至报废。
这种磨损称为磨粒磨损(见图4、图5、图6)。
它是开式齿轮传动的主要形式之一。
改用闭式齿轮传动是避免齿面磨粒磨损最有效的方法。
齿面点蚀点蚀是齿面疲劳损伤的现象之一。
在润滑良好的闭式齿轮传动中,常见的齿面失效形式多为点蚀。
所谓点蚀就是齿面材料变化着的接触应力作用下,由于疲劳而产生的麻点状损伤现象(见图7 图8 图9)。
齿面上最初出现的点蚀仅为针尖大小的麻点,如工作条件未加改善,麻点就会逐渐扩大,甚至数点连成一片,最后形成了明显的齿面损伤。
齿轮在啮合过程中,齿面间的相对滑动起着形成润滑油膜的作用,而且相对滑动速度愈高,愈易在齿面间形成油膜,润滑也就愈好。
当轮齿在靠近节线处啮合时,由于相对滑动速度低,形成油膜的条件差,润滑不良,摩擦力较大,特别是直齿轮传动,通常这时只有一对齿啮合,轮齿受力也最大,因此,点蚀也就首先出现在靠近节线的齿根面上,然后再向其它部位扩展。
动画演示从相对意义上说,也就是靠近节线处的齿根面抵抗点蚀的能力最差(即接触疲劳强度最低)。
提高齿轮材料的硬度,可以增强齿轮抗点蚀的能力。
在啮合的轮齿间加注润滑油可以减小摩擦,减缓点蚀,延长齿轮的工作寿命。
并且在合理的限度内,润滑油的粘度越高,上述效果也愈好。
因为当齿面上出现疲劳裂纹后,润滑油就会侵入裂纹,而且粘度愈低的油,愈易侵入裂纹。
润滑油侵入裂纹后,在轮齿啮合时,就有可能在裂纹内受到挤胀,从而加快裂纹的扩展,这是不利之处。
所以对速度不高的齿轮传动,以用粘度高一点的油来润滑为宜;对速度较高的齿轮传动(如圆周速度v>12m/s),要用喷油润滑(同时还起散热的作用),此时只宜用粘度低的油。
开式齿轮传动,由于齿面磨损较快,很少出现点蚀。
齿面胶合对于高速重载的齿轮传动(如航空发动机减速器的主传动齿轮),齿面间的压力大,瞬间温度高,润滑效果差,当瞬时温度过高时,相啮合的两齿面就会发生粘在一起的现象,由于此时两齿面又在作相对滑动,相粘结的部位即被撕破,于是在齿面上沿相对滑动的方向形成伤痕,称为胶合,如图10、图11、图12中的轮齿部分所示。
传动时齿面瞬时温度愈高、相对滑动速度愈大的地方,愈易发生胶合。
有些低速重载的重型齿轮传动,由于齿面间的油膜遭到破坏,也会产生胶合失效。
此时,齿面的瞬时温度并无明显增高,故称为冷胶合。
加强润滑措施,采用抗胶合能力强的润滑油(如硫化油),在润滑油中加入极压添加剂等,均可防止或减轻齿面的胶合。
齿面塑性变形塑性变形属于轮齿永久变形一大类的失效形式,它是由于在过大的应力作用下,轮齿材料处于屈服状态而产生的齿面或齿体塑性流动所形成的。
塑性变形一般发生在硬度低的齿轮上;但在重载作用下,硬度高的齿轮上也会出现。
塑性变形又分为滚压塑变和锤击塑变。
滚压塑变是由于啮合轮齿的相互滚压与滑动而引起的材料塑性流动所形成的。
由于材料的塑性流动方向和齿面上所受的摩擦力方向一致,所以在主动轮的轮齿上沿相对滑动速度为零的节线处被碾出沟槽,而在从动轮的轮齿上则在节线处被挤出脊棱。
这种现象称为滚压塑变(见右图)。
锤击塑变则是伴有过大的冲击而产生的塑性变形,它的特征是在齿面上出现浅的沟槽,且沟槽的取向与啮合轮齿的接触线相一致。
提高轮齿齿面硬度,采用高粘度的或加有极压添加剂的润滑油均有助于减缓或防止轮齿产生塑性变形。
图13 图14 图15动画演示提高轮齿对上述几种失效形式的抵抗能力,除上面所说的办法外,还有减小齿面粗糙度值,适当选配主、从动齿轮的材料及硬度,进行适当的磨合(跑合),以及选用合适的润滑剂及润滑方法等。
前已说明,轮齿的失效形式很多。
除上述五种主要形式外,还可能出现齿面融化、齿面烧伤、电蚀、异物啮入和由于不同原因产生的多种腐蚀和裂纹等等,可参看有关资料。
二、齿轮的受力分析和计算载荷1、受力分析进行齿轮的强度计算时,首先要知道齿轮上所受的力,这就需要对齿轮传动作受力分析。
当然,对齿轮传动进行力分析也是计算安装齿轮的轴及轴承时所必需的。
齿轮传动一般均加以润滑,啮合轮齿间的摩擦力通常很小,计算轮齿受力时,可不予考虑。
沿啮合线作用在齿面上的法向载荷F n垂直于齿面,为了计算方便,将法向载荷F n在节点P处分解为两个相互垂直的分力,即圆周力F t与径向力F r, 。
由此得F t=2T1/d1; F r=F t tanα; F n=F t/cosα(a)式中:T1—小齿轮传递的转矩,N·mm;d1—小齿轮的节圆直径,对标准齿轮即为分度圆直径,mm;α—啮合角,对标准齿轮,α=20°。
2、计算载荷为了便于分析计算,通常取沿齿面接触线单位长度上所受的载荷进行计算。
沿齿面接触线单位长度上的平均载荷p(单位为N/mm)为式中:F n--作用于齿面接触线上的法向载荷,N;L--沿齿面的接触线长,mm。
法向载荷Fn为公称载荷,在实际传动中,由于原动机及工作机性能的影响,以及齿轮的制造误差,特别是基节误差和齿形误差的影响,会使法向载荷增大。
此外,在同时啮合的齿对间,载荷的分配并不是均匀的,即使在一对齿上,载荷也不可能沿接触线均匀分布。
因此在计算齿轮传动强度时,应按接触线单位长度上的最大载荷,即计算载荷p ca(单位为N/mm)进行计算。
即式中K为载荷系数。
计算齿轮强度用的载荷系数K,包括使用系数K A,动载系数K v,齿间载荷分配系数Kα及齿向载荷分布系数Kβ,即K A--使用系数使用系数K A是考虑齿轮啮合时外部因素引起的附加动载荷影响的系数。
这种动载荷取决于原动机和工作机的特性,质量比,联轴器类型以及运行状态等。
K A的使用值应针对设计对象,通过实践确定。
下表<使用系数>所列的K A值可供参考。
使用系数K A严重冲击挖掘机,重型球磨机,橡胶揉合机,破碎机,重型给水泵,旋转式钻探装置,压砖机,带材冷轧机,压坯机等1.75 1.852.002.25或更大注:表中所列K A值仅适用于减速传动;若为增速传动,K A值约为表值的1.1倍。
当外部机械与齿轮装置间有挠性连接时,通常K A值可适当减少。
三、齿轮强度计算1、齿面接触疲劳强度计算齿面接触疲劳强度计算的基本公式为:F ca为计算载荷,L为接触线长度,为计算方便,取接触单位长度上的计算载荷式中:ρ∑—啮合齿面上啮合点的综合曲率半径;Z E—弹性影响系数,数值列于下表,则上式为(d)弹性影响系数Z E /()齿轮材料配对齿轮材料灰铸铁球墨铸铁铸钢锻钢夹布塑胶11.8×17.3×20.2×20.6×0.785×锻钢162.0181.4188.9189.856.4铸铁161.4180.5188.0——球墨铸铁156.6173.9—灰铸铁143.7—注:表中所列夹布塑胶的泊松比μ为0.5,其余材料的μ均为0.3。
渐开线齿廓上各点的曲率(1/ρ)并不相同,沿工作齿廓各点所受的载荷也不一样。
因此按式(d)计算齿面的接触强度时,就应同时考虑啮合点所受的载荷及综合曲率(1/ρ∑)的大小。
对端面重合度≤2的直齿轮传动,如图<齿面上的接触应力>所示,以小齿轮单对齿啮合的最低点(图中C点)产生的接触应力为最大,与小齿轮啮合的大齿轮,对应的啮合点是大齿轮单对齿啮合的最高点,位于大齿轮的齿顶面上。
如前所述,同一齿面往往齿根面先发生点蚀,然后才扩展到齿顶面,亦即齿顶面比齿根面具有较高的接触疲劳强度。
因此,虽然此时接触应力大,但对大齿轮不一定会构成威胁。
由图<齿面上的接触应力>可看出,大齿轮在节处的接触应力较大,同时,大齿轮单对齿啮合的最低点(图中D 点)处接触应力也较大。
但按单对齿啮合的最低点计算接触应力比较麻烦,并且当小齿轮齿数z1≥20时,按单对齿啮合的最低点所计算得的接触应力与按节点啮合计算得的接触应力极为相近。
为计算方便,通常即以节点啮合为代表进行齿面的接触强度计算。
下面即介绍按节点啮合进行接触强度计算的方法:节点啮合的综合曲率为轮齿在节点啮合时,两轮齿廓曲率半径之比与两轮的直径或齿数成正比,即ρ2/ρ1=d2/d1=z2/z1=u,故得如图所示,小齿轮轮齿节点P处的曲率半径。
对于标准齿轮,节圆就是分度圆,故得ρ1=d1sin α/2则:取L=b(b为齿轮设计工作宽度),于是(d)式为:令——区域系数(标准直齿轮α=20°时,Z H=2.5),则可写为MPa将F t=2T1/d1、φd=b/d1代入上式得σH=于是mm若将Z H=2.5代入上面两式,得MPa 及2、齿根弯曲疲劳强度计算轮齿在受载时,齿根所受的弯矩最大,因此齿根处的弯曲疲劳强度最弱。