正项级数敛散性的判断及其应用摘要级数是高等数学教学中的一个重要内容,而正项级数又是级数的重要组成部分,敛散性问题级数理论的一个基本问题,判别正项级数敛散性的方法很多.本文总结了正项级数的各种敛散性判别法,主要有比较判别法及其推广、积分判别法及其推广、导数判别法和一般项级数敛散性判别法;简单介绍了它们强弱性关系,给出了典型例题验证上述判别法的有效性.关键词正项级数;判别法;敛散性The Convergence Tests and Applicationfor Series of Positive Terms!AbstractHigher Mathematics series is an important part of teaching, The series of positive terms is an important series Part, Positive identification of Convergence and Divergence of many paper has summarized a variety of convergence judge methods for positive terms series, including comparison principle and its extension, integrated judge method and its extension, derivate judge method and judge methods of general series, some famous tests such as Cauchy Test, D’Alembert Test, Kummer Test and Gauss Test come from Comparison principle; given a brief introduction of their week and strong relationship of convergence, set examples for identifying the effectiveness of these judge methods.Key wordspositive terms series; judge methods; convergence1 前言历史上,人们曾把无穷个实数相加12n u u u +++看成无穷个数的和.恰如有限个数的和一样,这在直观上容易被人接受.在《庄子·天下篇》中提到“一尺之捶,日取半截,万世不竭”,把每天截下的那一部分的长度加起来:2311112222n ++++,从直观上看,它的和是1,但是下面“无限个实数相加”111111-+-+-的和是多少如果写成()(11)11(11)00-+-+-=++其结果是0.如果写成1(11)(11)(11)100------=---其结果是1.两个结果完全不同.因此提出这样的问题:“无限个数相加”是否存在“和”如果存在,“和”是多少十七八世纪的一些著名的数学家曾对此感到迷惑,并有许多争论,并给出了这个级数“和”的不同结果.例如莱布尼兹认为这个“和”是0到1之间的一个数.他论证说,这个级数前n 项和形成一个数列12341,0,1,0,S S S S ====,其中0和1出现的机会相同,因此取它的平均数01122+=为这个级数的和.这一说法得到了著名数学家伯努利(Bernouli)兄弟的首肯.有人做过如下论证:既然111111-+-+-是一个数,记为S ,由于11(1111)1111S S -=--+-+=-+-+=,即为1S S -=,得12S =.大数学家欧拉(Euler)也主张用等比公式:23111q q q q ++++=-,把1q =-代入得到111+112=--+,他用同样的讨论得到其他的一些结果.例如把2q =-代入得112483=-+-+,而这些结果现在看起来都是荒谬的.后来人们认识到“无穷多个数相加”,这是一个根本无法操作的过程,人们不知道怎样把无穷多个数相加.经过很长一段时间,数学家柯西(Cauchy)给出了无穷级数的严格定义,之后级数理论得到了充分地发展.无穷级数是表示函数、研究函数和数值计算的重要工具,我国古代数学家刘徵创立的“割圆术”对圆面积的近似计算已具有了初步的无穷级数的概念,无穷级数在自然科学与工程技术中具有广泛的应用.级数是否存在和,即为判断级数是否收敛的问题.级数的收敛性是级数首要的重要性质.因此对于一个给定的级数,首先应判断它是否收敛.若数项级数各项符号都相同称为同号级数.对于同号级数,只须研究各项是正数组成的级数---正项级数.定义在区间I 的函数项级数()1n n u x ∞=∑,当在I 内任意取定一点0x 时, 便得到一个数项级数.自然,对函数项级数的研究极大地依赖于对数项级数的研究,而正项级数是数项级数中最基础的级数,研究数项级数的性质如绝对收敛、条件收敛,需要用到正项级数敛散性判别法,在函数项级数如幂级数收敛半径求解,函数项级数一致收敛Weierstrass 判别法(M 判别法或优级数判别法)中也用到了正项级数敛散性. 1 正项级数的定义和收敛的充要条件正项级数的定义如果级数1n n u ∞=∑中各项均有0n u ≥,这种级数称为正项级数.正项级数收敛的充要条件如果级数1n n u ∞=∑中,部分和数列{}n S 有界,即存在某正数M ,对0,n ∀>有{}n S M <.2 比较判别法及其推广比较判别法【 1】设n u ∑和n v ∑是两个正项级数,如果存在某个正数N ,对一切n>N 都有n un v ≤,那么(1) 若级数n v ∑收敛,则级数n u ∑也收敛; (2) 若级数n u ∑发散,则级数n v ∑也发散.推论:比较判别法的极限形式:设n u ∑和n v ∑是两个正项级数.若limnn nu l v →∞=,则 (1)当0l <<+∞时,n u ∑和n v ∑同时收敛或同时发散; (2)当0l =时,若级数n v ∑收敛,则级数n u ∑也收敛; (3)当l =+∞,若级数n v ∑发散,则级数n u ∑也发散.定理[]1(达朗贝尔判别法或比值判别法)设为n u ∑正项级数,且存在某正整数0N 及常数(01)q q << (1) 若对一切0n N >,成立不等式1n nu q u +≤,则级数n u ∑收敛; (2)若对一切0n N >,成立不等式11n nu u +≥,则级数n u ∑发散.推论[]1(达朗贝尔判别法的极限形式) 设∑∞=1n n u 为正项级数,且1limn n nu q u +→∞=,则 (1)当1<q 时,级数∑∞=1n n u 收敛;(2)当1>q 或∞=q 时,级数∑∞=1n n u 发散.推论[4] 若为n u ∑正项级数,则(1)当1lim1n n n u u +→∞<时,级数n u ∑收敛;(2)当1lim1n n nu u +→∞≥时,级数n u ∑发散.例 讨论级数()()()()()()()1111110,0,0!11n n n n n αααβββαβγγγγ∞=++-++-+>>>++-∑的敛散性.解 令()()()()()()1111!11n n n u n n αααβββγγγ++-++-=++-,则()()()()111111lim lim lim 11n nn n n n n n n n n n n u e e n n e u n n e e n n γγαβαβγγαβαβ+--→∞→∞→∞+⎛⎫⎛⎫+⋅+ ⎪ ⎪⎡⎤++⎛⎫⋅⎝⎭⎝⎭====⎢⎥ ⎪++⋅⎛⎫⎛⎫⎝⎭⎣⎦+⋅+ ⎪ ⎪⎝⎭⎝⎭, 所以,当11γαβ+-->时,即0γαβ-->时,∑∞=1n n u 收敛,故原级数收敛;当11γαβ+--<时,即0γαβ--<时,∑∞=1n n u 发散,故原级数发散.例 讨论级数1!nn n n n e∞=∑的敛散性.解 令!nn n nu n e =,()()1111!!111nnnn n n n n n nn n e u n e H u n e n n ++⎡⎤⎢⎥⎡⎤+⎛⎫⎢⎥==⋅=⎢⎥ ⎪⎢⎥+⎢⎥⎛⎫⎝⎭⎣⎦+⎢⎥ ⎪⎝⎭⎣⎦,则 ()()()20001ln 1111lim ln lim 1ln 1lim1ln 11ln 1lim lim 11lim 212n n n n x x x n n H n n n nx x x x x x x →∞→∞→∞→→→⎛⎫+ ⎪⎝⎭-⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦+--+====+. 则12lim n n H e e →∞=<,由推论得级数1!nn n n n e∞=∑发散. 定理[]1(柯西判别法) 设∑∞=1n n u 为正项级数,且存在某正整数0N 及正常数l ,(1)若对一切0N n >,不等式1<≤l u nn 成立,则级数∑∞=1n n u 收敛;(2)若对一切0N n >,不等式1≥nn u 成立,则级数∑∞=1n n u 发散.推论[]1(柯西判别法的极限形式) 设∑∞=1n n u 为正项级数,且n l =.则(1)当1<l 时,级数∑∞=1n n u 收敛;(2)当1>l 时,级数∑∞=1n n u 发散.定理[]2 设∑∞=1n n u 为正项级数,若2211limlim n n n n n n u u u u ρ+→∞→∞+==,则当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.证明 当21<ρ时,取0>ε,使()121><=+s r sερ,则 212n s n u r u ρε<+=<,21112n s n u r u ρε++<+=<.取sn n b 1=,则21111lim lim 212sn s n n n b n b n +→∞→∞++⎛⎫== ⎪+⎝⎭,21lim lim 22sn s n n n b n b n →∞→∞⎛⎫== ⎪⎝⎭,由极限保号性得r b b n n >++112, 2nn b r b >,故112112++++>n n n n u u b b ,n n n n u u b b 22>,而∑∞=1n n b 收敛,由引理知∑∞=1n n u 收敛;当21>ρ时,由2211lim lim n n n n n n u uu u ρ+→∞→∞+==,对任意的0ε>当n 充分大时,有2n n u u ρερε-<<+与211n n u u ρερε++-<<+,取11-=n b n ,则2111limlim 22n n n n b n b n +→∞→∞+==,211lim lim 212n n n n b n b n →∞→∞-==-,对任意的0ε>当n 充分大时,有2111122n n b b εε++-<<+与21122n n b b εε-<<+,取1202ρε-<<,则当n 充分大时,有22n n n n b u b u <,212111n n n n b u b u ++++<,由引理知∑∞=1n n u 发散.例 判断正项级数21ln n nn∞=∑的敛散性. 解 ()()212ln 1lim lim 11ln n n n nn n a a n n +→∞→∞+==+,故由达朗贝尔判别法无法判断,而()()222ln 211lim lim 422ln nn n nn n a a n n →∞→∞==<,()()()()221211ln 2111lim lim 4221ln 1n n n n n n a a n n +→∞→∞+++==<++,由定理得21ln n nn∞=∑收敛. 推论[]3 设∑∞=1n n u 为正项级数,若()1lim0,1,21kn in nu i k u ρ-+→∞==-,当k 1<ρ时,∑∞=1n n u 收敛,当1k ρ>时,∑∞=1n n u 发散.推论[]3 设∑∞=1n n u 为正项级数,若1lim1n n n u u +→∞=且2lim n n nu u ρ→∞=,则当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.推论[]3 设∑∞=1n n u 为正项级数,且1limn n nu u ρ+→∞=,若1<ρ,则2211limlim 0n n n n n n u u u u +→∞→∞+==;若1>ρ,则2211lim lim n n n n n n u uu u +→∞→∞+==+∞. 3 积分判别法引理[]1 正项级数∑∞=1n n u 收敛的充要条件是:部分和数列{}n S 有界,即存在某正整数M ,对一切正整数n 有M S n <.定理[]1 设f 为[)+∞,1上非负递减函数,那么正项级数∑)(n f 与反常积分dx x f ⎰+∞1)(同时收敛或同时发散.例 讨论级数()21ln pn n n ∞=∑的敛散性.解 由定理知级数与反常积分()2ln pdx x x +∞⎰具有相同的敛散性,而()()()22ln =ln ln pppInn d x dx du u x x x +∞+∞+∞=⎰⎰⎰, 当1p >时收敛,当1p ≤时发散.故当1p >时级数收敛,当1p ≤级数时发散.定理[]5 设函数()x f 是单调递减的正值函数,如果存在充分大的N ,当N x >时,有()()x f e f e x x ρ<,则当01ρ<<时,级数∑)(n f 收敛;若()()x f e f e x x ≥,级数∑)(n f 发散.证明 当N x >时,有()()x f e f e x x ≥,对任意正数1n x x x -<,有()()dx x f dx e f e nn nn x x x x xx⎰⎰--<11ρ,变量替换后得()()dx x f dx x f nn nx n x x x e e ⎰⎰--≥11ρ.取如下序列{}n x , ,,,,,112321-====n x n x e x e x e x x ,故上述积分变为()()()111,2,3,n nnn x x xx f x dx f x dxn ρ+-≥=⎰⎰故有()()() ,3,2,111=≥⎰⎰+n dx x f dx x f e x x n nρ故有()()()()∞→∞→≥=⎰∑⎰⎰=+n dx x f n dx x f dx x f enk x x x k kn当1111ρ所以dx x f ⎰+∞1)(发散,由引理知∑)(n f 发散.若()()x f e f e x x ρ<,则()()()()1111221nkk ennx x ex k k f x dx f x dx f x dx f x dx ρ-===<<<+∞-⎰∑∑⎰⎰⎰,由比较判别法,dx x f ⎰+∞1)(收敛,由定理知∑)(n f 收敛.推论[]5 设函数()x f 是单调递减的正值函数,又设()()limx x x e f e f x λ→+∞=,则当1<λ时,级数∑)(n f 收敛;当 1>λ时,级数∑)(n f 发散.例 讨论级数()()11ln ln ln pqn n n n ∞=∑的敛散性.解 令()()()1ln ln ln pqf x x x x =,且()()()()1limlim ln ln ln x x p qqp x x e f e x x x f x --→+∞→+∞=,当10p ->,即1p <,或当1p =,0p q -<时,()()lim01x x x e f e f x →+∞=<,则级数()()11ln ln ln pqn n n n ∞=∑收敛;当1p q ==时,()()lim1x x x e f e f x →+∞=+∞>,则级数发散.4导数判别法定理[]6(导数极限判别法) 设∑)1(nf 为正项级数,)(x f 是一连续实函数,若级数∑)1(nf 收敛,则()00f =.定理[]6设∑)1(nf 为正项级数,)(x f 是一连续实函数且在0x =处二阶可导,则级数∑)1(nf 收敛的充分必要条件是0)0()0(='=f f .证明 必要性.由定理 得0)0(=f . 设(0)(0,)f a a '=≠∞,a xx f x f x f f x x ==-='→→)(lim )0()(lim)0(00,由归结原理得an n f n =⎪⎭⎫ ⎝⎛→11lim 0,取a <<ε0,当n N >时,ε<-⎪⎭⎫ ⎝⎛a nn f 11,即1a f n n ε-⎛⎫> ⎪⎝⎭,而11n n∞=∑发散,由比较判别法,得∑)1(nf 发散;当+∞=')0(f ,+∞==-='→→xx f x f x f f x x )(lim )0()(lim)0(00,由归结原理得+∞=⎪⎭⎫⎝⎛→n nf n 11lim 0.对任意正整数M ,存在正整数N ,当n N >时,Mnn f >⎪⎭⎫ ⎝⎛11,即n M n f >⎪⎭⎫ ⎝⎛1,由比较判别法,得∑)1(n f 发散,与条件矛盾,故0)0(='f .充分性 对于任意的01α<<有()()()()()111+00000()()1lim lim lim 0lim 0111+x x x x f x f f x f x x f x x x x ααααααα--→→→→''-'''====++, 于是由归结原理011lim01x f n n α→+⎛⎫⎪⎝⎭=,而()1110n nαα∞+=>∑收敛,故∑)1(n f 收敛. 例 判断级数11sin n n∞=∑的敛散性.解 级数11sin n n∞=∑为正项级数,()sin f x x =为连续二阶可导函数,且(0)10f '=≠,由定理知11sinn n∞=∑发散. 例 判断级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑的敛散性.解 级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑为正项级数,()1cos f x x =-为连续二阶可导函数,且0)0()0(='=f f ,由定理知111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.5 两种一般项级数收敛性的方法 阿贝尔判别法定理[]1(阿贝尔判别法) 若{}n a 为单调有界数列,且n b ∑收敛,则n n a b ∑收敛.例 讨论级数()311ln 1ln n nn ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.解 1ln 1n ⎧⎫⎛⎫+⎨⎬ ⎪⎝⎭⎩⎭为单调递减有界数列,且()311ln n n ∞=∑收敛,由阿贝尔判别法知级数()311ln 1ln n nn ∞=⎛⎫+ ⎪⎝⎭∑收敛.例 讨论级数211nnn⎛⎫+ ⎪⎝⎭∑的敛散性.解 数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调有界,且211n n ∞=∑收敛,由阿贝尔判别法知211nn n ⎛⎫+ ⎪⎝⎭∑收敛. 狄利克雷判别法定理[]1 (狄利克雷判别法) 若数列{}n a 为单调递减,且lim 0n n a →∞=,又级数n b ∑的部分和有界,则n n a b ∑收敛.例 讨论2sin12ln n n nπ∞=∑的敛散性.解21cos cos sinsin 1661212ln ln 2ln 2ln 2ln n n n n n n n n nππππ-≥==-. 因为1ln n当n →∞时单调下降趋于零,又 121sin sin 31212cos 62sin 2sin1212k n k πππππ∞=+-=≤∑, ,由狄利克雷判别法知级数1cos6ln n n n π∞=∑收敛.而级数21ln n n ∞=∑发散,故级数2sin12ln n n nπ∞=∑发散. 判断一般项级数收敛性的方法,也适用于正项级数.若正项级数可以看成两级数通项乘积的形式,则可利用上述两种方法判断之. 6 结束语级数理论是数学分析的重要组成部分,无穷级数是表示函数、研究函数和数值计算的重要工具,无穷级数在自然科学与工程技术中具有广泛的应用.而正项级数又是级数理论中重要的组成部分,级数的收敛性是级数重要性质.判断正项级数的一般顺序是先检验通项的极限是否为0,若不为0,则发散,若为0,则判断级数的部分和是否有界,有界则收敛,否则发散.若级数的一般项可以进行适当的放缩则使用比较判别法,或可以找到其等价式用等价判别法.当通项具有一定的特点时,则根据其特点选择适用的方法,如达朗贝尔判别法、柯西判别法或拉贝判别法等.同时,根据条件选择积分判别法或导数判别法等.由此,我们可以得到正项级数的判别法是多种多样的,每当一种判别法无法判断时,就出现一种新的判别法来进行判断,因此对正项级数的判别法的探讨无穷无尽.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点选择适宜的方法进行判断,能够节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍.本文归纳正项级数收敛性判断的一些典型方法,收集了一些典型例题.正项级数收敛判别法也可用于判定负项级数及变号级数的绝对收敛性的判断,也可以推广到函数项级数的敛散性判别中.参考文献[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2006:6-16.[2] 李铁烽.正项级数判敛的一种新的比值判别法[J].北京:数学通报,1990, (1) :46 - 47.[3] 龙艳.关于正项级数收敛性判断的一个推广[J].长春师范学院学报, 2009,28(6):1-3.[4] 冯江浪.关于一些特殊正项级数敛散性的判别法[J].中国科技信息,2009,(1):25.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006:448-452.[6] 刘玉璞.导数在正项级数敛散性判定中的应用[J]. 高等数学研究,1994,(2):13-14.致谢四年时光飞逝,大学即将毕业,在这里我要向数学系的老师同学们,尤其是我的指导老师王树泽老师表示诚挚的感谢!在写作过程中您对我进行了细心地指导,悉心地点拨,不仅使我接受了新的思想观念,激发了学习兴趣,而且提高了收集整理材料和自学能力,掌握了新的数学思想.另外,感谢校方提供了使我能够独立完成一个课题的机会,并在这个过程中给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践能力和动手能力,提高了独立思考的能力.路漫漫其修远兮,吾将上下而求索.我愿在未来的学习和研究过程中,以更加丰厚的成果来答谢曾经关心、帮助和支持过我的所有领导、老师、同学、和朋友.学无止境.明天,将是我终身学习另一天的开始!%。